Towards the deformation quantization of linearized gravity

被引:7
|
作者
Quevedo, H
Tafoya, JG
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
关键词
linearized gravity; deformation quantization;
D O I
10.1007/s10714-005-0193-x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a first attempt to apply the approach of deformation quantization to linearized Einstein's equations. We use the analogy with Maxwell equations to derive the field equations of linearized gravity from a modified Maxwell Lagrangian which allows the construction of a Hamiltonian in the standard way. The deformation quantization procedure for free fields is applied to this Hamiltonian. As a result we obtain the complete set of quantum states and the discrete energy spectrum of linearized gravity.
引用
收藏
页码:2083 / 2092
页数:10
相关论文
共 50 条
  • [21] Deformation quantization of contact manifolds
    Elfimov, Boris M.
    Sharapov, Alexey A.
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (06)
  • [22] QUANTIZATION VIA DEFORMATION OF PREQUANTIZATION
    Duval, Christian
    Gotay, Mark J.
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (03) : 361 - 374
  • [23] Morita theory in deformation quantization
    Stefan Waldmann
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 831 - 852
  • [24] Deformation quantization and Nambu Mechanics
    G. Dito
    M. Flato
    D. Sternheimer
    L. Takhtajan
    Communications in Mathematical Physics, 1997, 183 : 1 - 22
  • [25] Deformation Quantization of Algebraic Varieties
    Maxim Kontsevich
    Letters in Mathematical Physics, 2001, 56 : 271 - 294
  • [26] Deformation quantization with generators and relations
    Calaque, Damien
    Felder, Giovanni
    Rossi, Carlo A.
    JOURNAL OF ALGEBRA, 2011, 337 (01) : 1 - 12
  • [27] Deformation quantization of classical fields
    García-Compeán, H
    Plebanski, JF
    Przanowski, M
    Turrubiates, FJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (14): : 2533 - 2558
  • [28] Graph Complexes in Deformation Quantization
    Domenico Fiorenza
    Lucian M. Ionescu
    Letters in Mathematical Physics, 2005, 73 : 193 - 208
  • [29] Morita theory in deformation quantization
    Waldmann, Stefan
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (04): : 831 - 852
  • [30] On infinite walls in deformation quantization
    Kryukov, S
    Walton, MA
    ANNALS OF PHYSICS, 2005, 317 (02) : 474 - 491