Permeability reduction in granite under hydrothermal conditions

被引:136
作者
Morrow, CA [1 ]
Moore, DE [1 ]
Lockner, DA [1 ]
机构
[1] US Geol Survey, Menlo Pk, CA 94025 USA
关键词
D O I
10.1029/2000JB000010
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The formation of impermeable fault seals between earthquake events is a feature of many models of earthquake generation, suggesting that earthquake recurrence may depend in part on the rate of permeability reduction of fault zone materials under hydrothermal conditions. In this study, permeability measurements were conducted on intact, fractured, and gouge-bearing Westerly granite at an effective pressure of 50 MPa and at temperatures from 150degrees to 500degreesC, simulating conditions in the earthquake-generatin g portions of fault zones. Pore fluids were cycled back and forth under a 2 MPa pressure differential for periods of up to 40 days. Permeability of the granite decreased with time t, following the exponential relation k = c(10(-rt)). For intact samples run between 250degrees and 500degreesC the time constant for permeability decrease r was proportional to temperature and ranged between 0.001 and 0.1 days(-1) (i.e., between 0.4 and 40 decades year(-1) loss of permeability). Values of r for the lower-temperature experiments differed little from the 250degreesC runs. In contrast, prefractured samples showed higher rates of permeability decrease at a given temperature, The surfaces of the fractured samples showed evidence of dissolution and mineral growth that increased in abundance with both temperature and time. The experimentally grown mineral assemblages varied with temperature and were consistent with a rock-dominated hydrothermal system. As such mineral deposits progressively seal the fractured samples, their rates of permeability decrease approach the rates for intact rocks at the same temperature. These results place constraints on models of precipitation sealing and suggest that fault rocks may seal at a rate consistent with earthquake recurrence intervals of typical fault zones.
引用
收藏
页码:30551 / 30560
页数:10
相关论文
共 48 条