Stabilization in the logarithmic Keller-Segel system

被引:48
作者
Winkler, Michael [1 ]
Yokota, Tomomi [2 ]
机构
[1] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany
[2] Tokyo Univ Sci, Dept Math, Tokyo 1628601, Japan
关键词
Chemotaxis; Singular sensitivity; Large time behavior; PARABOLIC CHEMOTAXIS SYSTEM; GLOBAL ASYMPTOTIC STABILITY; NI-TAKAGI PROBLEM; SINGULAR SENSITIVITY; LOGISTIC SOURCE; BLOW-UP; GENERAL SENSITIVITY; CONSTANT EQUILIBRIA; BOUNDEDNESS; EXISTENCE;
D O I
10.1016/j.na.2018.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Keller-Segel system {ut = D Delta u - D chi del center dot(u/v del v), x is an element of Omega, t > 0, vt = D Delta v - v + u, x is an element of Omega, t >0, is considered in a bounded domain Omega subset of R-n, n >= 2, with smooth boundary, where chi > 0 and D > 0. The main results identify a condition on the parameters chi < root 2/n and D > 0, essentially reducing to the assumption that chi(2)/D be suitably small, under which for all reasonably regular and positive initial data the corresponding classical solution of an associated Neumann initial- boundary value problem, known to exist globally according to previous findings, approaches the homogeneous steady state ((u) over bar (0), (u) over bar (0)) at an exponential rate with respect to the norm in (L-infinity(Omega))(2) as t -> infinity, where (u) over bar (0) := 1/vertical bar Omega vertical bar integral(Omega) u(center dot, 0). As a particular consequence, this entails a convergence statement of the above flavor in the normalized system with D = 1 and fixed chi < root 2/n, provided that Omega satisfies a certain smallness condition. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 141
页数:19
相关论文
共 36 条
[1]   An optimal bound on the number of interior spike solutions for the Lin-Ni-Takagi problem [J].
Ao, Weiwei ;
Wei, Juncheng ;
Zeng, Jing .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (07) :1324-1356
[2]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[3]  
Biler P., 1999, ADV MATH SCI APPL, V9, P347
[4]  
Black T., PREPRINT
[5]   Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions [J].
Bonheure, Denis ;
Grumiau, Christopher ;
Troestler, Christophe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 :236-273
[6]   Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents [J].
del Pino, Manuel ;
Mahmoudi, Fethi ;
Musso, Monica .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (08) :1687-1748
[7]  
Druet O., 2012, MEMOIRS AMS, V218, P1027
[8]   On convergence to equilibria for the Keller-Segel chemotaxis model [J].
Feireisl, Eduard ;
Laurencot, Philippe ;
Petzeltova, Hana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) :551-569
[9]  
Friedman A., 1969, PARTIAL DIFFERENTIAL
[10]  
Fujie K., 2016, THESIS