One-phase inverse Stefan problem solved by Adomian decomposition method

被引:38
作者
Grzymkowski, R [1 ]
Slota, D [1 ]
机构
[1] Silesian Tech Univ, Inst Math, PL-44100 Gliwice, Poland
关键词
inverse Stefan problem; Adomian decomposition method; heat equation;
D O I
10.1016/j.camwa.2005.08.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the solution of one-phase inverse Stefan problem is presented. The problem consists of the reconstruction of the function which describes the distribution of temperature on the boundary, when the position of the moving interface is well-known. The proposed solution is based on the Adomian decomposition method and the least square method. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 36 条
[2]  
Adomian G., 1994, SOLVING FRONTIER PRO
[3]  
Adomian G., 1983, STOCHASTIC SYSTEMS
[4]   Regularization of an inverse two-phase Stefan problem [J].
Ang, DD ;
Dinh, APN ;
Thanh, DN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (05) :719-731
[5]   A bidimensional inverse Stefan problem: Identification of boundary value [J].
Ang, DD ;
Dinh, APN ;
Thanh, DN .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 80 (02) :227-240
[6]   THE NUMERICAL-SOLUTION OF THE INVERSE STEFAN PROBLEM IN 2 SPACE VARIABLES [J].
COLTON, D ;
REEMTSEN, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (05) :996-1013
[7]   INVERSE STEFAN PROBLEM FOR HEAT EQUATION IN 2 SPACE VARIABLES [J].
COLTON, D .
MATHEMATIKA, 1974, 21 (42) :282-286
[8]  
Gautschi W., 1997, NUMERICAL ANAL INTRO
[9]  
GOLDMAN NL, 1997, INVERSE STEFAN
[10]   Stefan problem solved by Adomian decomposition method [J].
Grzymkowski, R ;
Slota, D .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (07) :851-856