Entropy, related thermodynamic properties, and structure of methylisocyanate

被引:4
|
作者
Davis, Phil S. [1 ]
Kilpatrick, John E.
机构
[1] Univ N Florida, Dept Phys, Jacksonville, FL 32224 USA
关键词
Entropy; Heat capacity; Thermodynamic properties; Structure; Methylisocyanate; NORMAL-COORDINATE ANALYSIS; MICROWAVE-SPECTRUM; METHYL ISOCYANATE; HEAT CAPACITY; MOLECULAR-STRUCTURES; AB-INITIO; TRANSITION; METHYLISOTHIOCYANATE;
D O I
10.1016/j.jct.2012.10.011
中图分类号
O414.1 [热力学];
学科分类号
摘要
The entropy and related thermodynamic properties of methylisocyanate, CH3NCO, have been determined by isothermal calorimetry. The entropy in the ideal gas state at 298.15 K and 1 atmosphere is S-m(o) = 284.3 +/- 0.6 J/K . mol. Other thermodynamic properties determined include: the heat capacity from 15 to 300 K, the temperature of fusion (T-fus = 178.461 +/- 0.024 K), the enthalpy of fusion (Delta H-fus = 7455.2 +/- 14.0 J/mol), the enthalpy of vaporization at 298.15 K (Delta H-vap = 28768 +/- 54 J/mol), and the vapor pressure from fusion to 300 K. Using statistical thermodynamics, the entropy in this same state has been calculated for various assumed structures for methylisocyante which have been proposed based on several spectroscopic and ab initio results. Comparisons between the experimental and calculated entropy have led to the following conclusions concerning historical differences among problematic structural properties: (1) The CNC/CNO angles can have the paired values of 140/180 degrees or 135/173 degrees respectively. It is not possible to distinguish between the two by this thermodynamic analysis. (2) The methyl group functions as a free rotor or near free rotor against the NCO rigid frame. The barrier to internal rotation is less than 2100 J/mol. (3) The CNC vibrational bending frequency is consistent with the more recently observed assignments at 165 and 172 cm(-1) with some degree of anharmonicity or with a pure harmonic at about 158 cm(-1). (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:134 / 141
页数:8
相关论文
共 50 条
  • [41] THERMODYNAMIC PROPERTIES OF THE ZEOLITE STILBITE
    HOWELL, DA
    JOHNSON, GK
    TASKER, IR
    OHARE, PAG
    WISE, WS
    ZEOLITES, 1990, 10 (06): : 525 - 531
  • [42] THERMODYNAMIC PROPERTIES OF HUMAN TISSUES
    Popovic, Marko E.
    Minceva, Mirjana
    THERMAL SCIENCE, 2020, 24 (06): : 4115 - 4133
  • [43] Thermodynamic Properties of Triphenylantimony Dibenzoate
    Markin, A. V.
    Smirnova, N. N.
    Lyakaev, D. V.
    Klimova, M. N.
    Sharutin, V. V.
    Sharutina, O. K.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 90 (10) : 1913 - 1920
  • [44] The thermodynamic properties of calcium uranoborate
    N. G. Chernorukov
    N. N. Smirnova
    A. V. Knyazev
    M. N. Marochkina
    T. A. Bykova
    A. V. Ershova
    Russian Journal of Physical Chemistry, 2006, 80 : 37 - 41
  • [45] Thermodynamic properties of cerium molybdate
    Nozaki, Ai
    Morishita, Masao
    Kinoshita, Yoshiki
    Yamamoto, Hiroaki
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2019, 110 (08) : 715 - 725
  • [46] Thermodynamic properties of holmium monogermanide
    Gorbachuk, N. P.
    Sidorko, V. R.
    Kirienko, S. N.
    Obushenko, I. M.
    POWDER METALLURGY AND METAL CERAMICS, 2008, 47 (7-8) : 451 - 456
  • [47] Thermodynamic properties of holmium monogermanide
    N. P. Gorbachuk
    V. R. Sidorko
    S. N. Kirienko
    I. M. Obushenko
    Powder Metallurgy and Metal Ceramics, 2008, 47 : 451 - 456
  • [48] Thermodynamic properties of starch and glucose
    Kabo, Gennady J.
    Voitkevich, Olga V.
    Blokhin, Andrey V.
    Kohut, Sviataslau V.
    Stepurko, Elena N.
    Paulechka, Yauheni U.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2013, 59 : 87 - 93
  • [49] Thermodynamic properties of lanthanum molybdates
    Yu. L. Suponitskiy
    O. P. Proshina
    A. G. Dyunin
    S. E. Liashenko
    Russian Journal of Physical Chemistry A, 2016, 90 : 267 - 270
  • [50] Thermodynamic properties of α-platinum dichloride
    Semenova, Z. I.
    Chusova, T. P.
    RUSSIAN CHEMICAL BULLETIN, 2008, 57 (06) : 1157 - 1159