Sparse regularization with lq penalty term

被引:132
作者
Grasmair, Markus [1 ]
Haltmeier, Markus [1 ]
Scherzer, Otmar [1 ,2 ]
机构
[1] Univ Innsbruck, Dept Math, A-6020 Innsbruck, Austria
[2] Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1088/0266-5611/24/5/055020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stable approximation of sparse solutions to nonlinear operator equations by means of Tikhonov regularization with a subquadratic penalty term. Imposing certain assumptions, which for a linear operator are equivalent to the standard range condition, we derive the usual convergence rate O(root delta) of the regularized solutions in dependence of the noise level delta. Particular emphasis lies on the case, where the true solution is known to have a sparse representation in a given basis. In this case, if the differential of the operator satisfies a certain injectivity condition, we can show that the actual convergence rate improves up to O(delta).
引用
收藏
页数:13
相关论文
共 28 条
[11]  
Diestel J., 1975, LECT NOTES MATH, V485
[12]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[13]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[14]   Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J].
Figueiredo, Mario A. T. ;
Nowak, Robert D. ;
Wright, Stephen J. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :586-597
[15]   A semismooth Newton method for Tikhonov functionals with sparsity constraints [J].
Griesse, R. ;
Lorenz, D. A. .
INVERSE PROBLEMS, 2008, 24 (03)
[16]   A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators [J].
Hofmann, B. ;
Kaltenbacher, B. ;
Poeschl, C. ;
Scherzer, O. .
INVERSE PROBLEMS, 2007, 23 (03) :987-1010
[17]  
LORENZ D, 2008, ARXIV08011774V1
[18]   On converse and saturation results for Tikhonov regularization of linear ill-posed problems [J].
Neubauer, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :517-527
[19]  
Neubauer A, 1996, MATH ITS APPL DORDRE
[20]   A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints [J].
Ramlau, Ronny ;
Teschke, Gerd .
NUMERISCHE MATHEMATIK, 2006, 104 (02) :177-203