Sparse regularization with lq penalty term

被引:132
作者
Grasmair, Markus [1 ]
Haltmeier, Markus [1 ]
Scherzer, Otmar [1 ,2 ]
机构
[1] Univ Innsbruck, Dept Math, A-6020 Innsbruck, Austria
[2] Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1088/0266-5611/24/5/055020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stable approximation of sparse solutions to nonlinear operator equations by means of Tikhonov regularization with a subquadratic penalty term. Imposing certain assumptions, which for a linear operator are equivalent to the standard range condition, we derive the usual convergence rate O(root delta) of the regularized solutions in dependence of the noise level delta. Particular emphasis lies on the case, where the true solution is known to have a sparse representation in a given basis. In this case, if the differential of the operator satisfies a certain injectivity condition, we can show that the actual convergence rate improves up to O(delta).
引用
收藏
页数:13
相关论文
共 28 条
[1]   A generalized conditional gradient method for nonlinear operator equations with sparsity constraints [J].
Bonesky, Thomas ;
Bredies, Kristian ;
Lorenz, Dirk A. ;
Maass, Peter .
INVERSE PROBLEMS, 2007, 23 (05) :2041-2058
[2]   Minimization of Tikhonov functionals in Banach spaces [J].
Bonesky, Thomas ;
Kazimierski, Kamil S. ;
Maass, Peter ;
Schoepfer, Frank ;
Schuster, Thomas .
ABSTRACT AND APPLIED ANALYSIS, 2008,
[3]   Iterated hard shrinkage for minimization problems with sparsity constraints [J].
Bredies, Kristian ;
Lorenz, Dirk A. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02) :657-683
[4]   Convergence rates of convex variational regularization [J].
Burger, M ;
Osher, S .
INVERSE PROBLEMS, 2004, 20 (05) :1411-1421
[5]  
Butnariu D, 2003, J CONVEX ANAL, V10, P35
[6]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[7]   PROXIMAL THRESHOLDING ALGORITHM FOR MINIMIZATION OVER ORTHONORMAL BASES [J].
Combettes, Patrick L. ;
Pesquet, Jean-Christophe .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1351-1376
[8]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[9]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[10]   A new approach towards simultaneous activity and attenuation reconstruction in emission tomography [J].
Dicken, V .
INVERSE PROBLEMS, 1999, 15 (04) :931-960