Transferable Force Fields from Experimental Scattering Data with Machine Learning Assisted Structure Refinement

被引:11
作者
Shanks, Brennon L. [1 ]
Potoff, Jeffrey J. [2 ]
Hoepfner, Michael P. [1 ]
机构
[1] Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA
[2] Wayne State Univ, Dept Chem Engn & Mat Sci, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
NEUTRON-DIFFRACTION; MONTE-CARLO; POTENTIAL PARAMETERS; PAIR INTERACTION; CRITICAL-POINT; LIQUID; SIMULATION; NEON; GAS; BEHAVIOR;
D O I
10.1021/acs.jpclett.2c03163
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Deriving transferable pair potentials from experimental neutron and X-ray scattering measurements has been a longstanding challenge in condensed matter physics. State-of-the-art scattering analysis techniques estimate real-space microstructure from reciprocal-space total scattering data by refining pair potentials to obtain agreement between simulated and experimental results. Prior attempts to apply these potentials with molecular simulations have revealed inaccurate predictions of thermodynamic fluid properties. In this Letter, a machine learning assisted structure-inversion method applied to neutron scattering patterns of the noble gases (Ne, Ar, Kr, and Xe) is shown to recover transferable pair potentials that accurately reproduce both microstructure and vapor-liquid equilibria from the triple to critical point. Therefore, it is concluded that a single neutron scattering measurement is sufficient to predict macroscopic thermodynamic properties over a wide range of states and provide novel insight into local atomic forces in dense monatomic systems.
引用
收藏
页码:11512 / 11520
页数:9
相关论文
共 78 条
[1]  
Allen M. P., 2017, COMPUTER SIMULATION, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   X-ray and Neutron Scattering of Water [J].
Amann-Winkel, Katrin ;
Bellissent-Funel, Marie-Claire ;
Bove, Livia E. ;
Loerting, Thomas ;
Nilsson, Anders ;
Paciaroni, Alessandro ;
Schlesinger, Daniel ;
Skinner, Lawrie .
CHEMICAL REVIEWS, 2016, 116 (13) :7570-7589
[3]  
Ambrogioni L., 2018, P 21 INT C ARTIFICIA, P217
[4]   HOOMD-blue: A Python']Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations [J].
Anderson, Joshua A. ;
Glaser, Jens ;
Glotzer, Sharon C. .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 173
[5]   Interaction of the van der Waals type between three atoms [J].
Axilrod, BM ;
Teller, E .
JOURNAL OF CHEMICAL PHYSICS, 1943, 11 (06) :299-300
[6]   3RD VIRIAL-COEFFICIENTS OF COLLISION-INDUCED, DEPOLARIZED LIGHT-SCATTERING OF HYDROGEN [J].
BAFILE, U ;
ULIVI, L ;
ZOPPI, M ;
MORALDI, M ;
FROMMHOLD, L .
PHYSICAL REVIEW A, 1991, 44 (07) :4450-4458
[7]   STATIC STRUCTURE OF DENSE KRYPTON AND INTERATOMIC INTERACTION [J].
BAROCCHI, F ;
CHIEUX, P ;
MAGLI, R ;
REATTO, L ;
TAU, M .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (26) :4299-4314
[8]   NEUTRON-DIFFRACTION STUDY OF LIQUID KRYPTON AND THE INTERATOMIC INTERACTION [J].
BAROCCHI, F ;
CHIEUX, P ;
MAGLI, R ;
REATTO, L ;
TAU, M .
PHYSICAL REVIEW LETTERS, 1993, 70 (07) :947-950
[9]   NEUTRON-DIFFRACTION OF LIQUID NEON AND XENON ALONG THE COEXISTENCE LINE [J].
BELLISSENTFUNEL, MC ;
BUONTEMPO, U ;
FILABOZZI, A ;
PETRILLO, C ;
RICCI, FP .
PHYSICAL REVIEW B, 1992, 45 (09) :4605-4613
[10]   Iterative integral equation methods for structural coarse-graining [J].
Bernhardt, Marvin P. ;
Hanke, Martin ;
van der Vegt, Nico F. A. .
JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (08)