Diagonalized Legendre spectral methods using Sobolev orthogonal polynomials for elliptic boundary value problems

被引:15
作者
Ai, Qing [1 ]
Li, Hui-yuan [2 ]
Wang, Zhong-qing [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Sci, Shanghai 200093, Peoples R China
[2] Chinese Acad Sci, Inst Software, Lab Parallel Comp, State Key Lab Comp Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Legendre spectral method; Sobolev orthogonal polynomials; Elliptic boundary value problems; A posterior error estimates; GENERALIZED LAGUERRE FUNCTIONS; GALERKIN METHOD; 2ND-ORDER;
D O I
10.1016/j.apnum.2018.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fully diagonalized spectral methods using Sobolev orthogonal/biorthogonal basis functions are proposed for solving second order elliptic boundary value problems. We first construct the Fourier-like Sobolev polynomials which are mutually orthogonal (resp. bi-orthogonal) with respect to the bilinear form of the symmetric (resp. unsymmetric) elliptic Neumann boundary value problems. The exact and approximation solutions are then expanded in an infinite and truncated series in the Sobolev orthogonal polynomials, respectively. An identity is also established for the a posterior error estimate with a simple error indicator. Further, the Fourier-like Sobolev orthogonal polynomials and the corresponding Legendre spectral method are proposed in parallel for Dirichlet boundary value problems. Numerical experiments illustrate that our Legendre methods proposed are not only efficient for solving elliptic problems but also equally applicable to indefinite Helmholtz equations and singular perturbation problems. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:196 / 210
页数:15
相关论文
共 12 条
[1]  
Boyd JP, 2001, Chebyshev and Fourier spectral methods
[2]  
Canuto C., 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[3]   Sobolev orthogonal polynomials on product domains [J].
Fernandez, Lidia ;
Marcellan, Francisco ;
Perez, Teresa E. ;
Pinar, Miguel A. ;
Xu, Yuan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 :202-215
[4]   A fully diagonalized spectral method using generalized Laguerre functions on the half line [J].
Liu, Fu-Jun ;
Wang, Zhong-Qing ;
Li, Hui-Yuan .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (06) :1227-1259
[5]   Spectral methods using generalized Laguerre functions for second and fourth order problems [J].
Liu, Fu-jun ;
Li, Hui-yuan ;
Wang, Zhong-qing .
NUMERICAL ALGORITHMS, 2017, 75 (04) :1005-1040
[6]   On Sobolev orthogonal polynomials [J].
Marcellan, Francisco ;
Xu, Yuan .
EXPOSITIONES MATHEMATICAE, 2015, 33 (03) :308-352
[7]   Fast algorithms for discrete polynomial transforms [J].
Potts, D ;
Steidl, G ;
Tasche, M .
MATHEMATICS OF COMPUTATION, 1998, 67 (224) :1577-1590
[9]   Fourierization of the Legendre-Galerkin method and a new space-time spectral method [J].
Shen, Jie ;
Wang, Li-Lian .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (5-7) :710-720
[10]  
Shen J, 2011, SPR SER COMPUT MATH, V41, P47, DOI 10.1007/978-3-540-71041-7_3