FIXED POINTS OF NILPOTENT ACTIONS ON R2

被引:0
|
作者
Firmo, Sebastiao [1 ]
Le Calvez, Patrice [2 ,3 ]
Ribon, Javier [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, Campus Gragoata, BR-24210201 Niteroi, RJ, Brazil
[2] Univ Paris, Sorbonne Univ, CNRS, Inst Mathemat & Jussieu Paris Rive Gauche, F-75005 Paris, France
[3] Inst Univ France, Paris, France
关键词
Fixed point; nilpotent group; linking number; rotation number; Thurston-Nielsen decomposition;
D O I
10.24033/ast.1102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show several results providing global fixed points for nilpotent groups of orientation-preserving C-1 diffeomorphisms of the plane R-2. The main cases are namely groups of diffeomorphisms of the sphere such that infinity is a global fixed point, groups of diffeomorphisms preserving a non-empty compact set and finally groups of diffeomorphisms preserving a probability measure.
引用
收藏
页码:113 / 156
页数:44
相关论文
共 50 条
  • [1] Fixed points of nilpotent actions on S2
    Ribon, Javier
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 173 - 197
  • [2] Global fixed points for nilpotent actions on the torus
    Firmo, S.
    Ribon, J.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (12) : 3339 - 3367
  • [3] Fixed points of discrete nilpotent group actions on S2
    Druck, S
    Fang, F
    Firmo, S
    ANNALES DE L INSTITUT FOURIER, 2002, 52 (04) : 1075 - +
  • [4] Fixed points for nilpotent actions on the plane and the Cartwright–Littlewood theorem
    S. Firmo
    J. Ribón
    J. Velasco
    Mathematische Zeitschrift, 2015, 279 : 849 - 877
  • [5] Fixed points of local actions of nilpotent Lie groups on surfaces
    Hirsch, Morris W.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1238 - 1252
  • [6] Positive Fixed Points of Cubic Operators on R2 and Gibbs Measures
    Eshkabilov, Yusup Kh
    Nodirov, Shohruh D.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2019, 12 (06): : 663 - 673
  • [7] Fixed points for nilpotent actions on the plane and the Cartwright-Littlewood theorem
    Firmo, S.
    Ribon, J.
    Velasco, J.
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (3-4) : 849 - 877
  • [8] Regulator dependence of fixed points in quantum Einstein gravity with R2 truncation
    Nagy, S.
    Fazekas, B.
    Peli, Z.
    Sailer, K.
    Steib, I.
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (05)
  • [9] Nilpotent residual of fixed points
    Emerson de Melo
    Aline de Souza Lima
    Pavel Shumyatsky
    Archiv der Mathematik, 2018, 111 : 13 - 21
  • [10] Nilpotent residual of fixed points
    de Melo, Emerson
    Lima, Aline de Souza
    Shumyatsky, Pavel
    ARCHIV DER MATHEMATIK, 2018, 111 (01) : 13 - 21