Experimental study on the effect of TiO2-water nanofluid on heat transfer and pressure drop

被引:144
作者
Arani, A. A. Abbasian [1 ]
Amani, J. [1 ]
机构
[1] Univ Kashan, Dept Mech Engn, Kashan, Iran
关键词
Experimental; TiO2-water nanofluid; Nanoparticles diameter; Nusselt number; Pressure drop; Turbulent flow; THERMAL-CONDUCTIVITY; TRANSFER ENHANCEMENT; TIO2; NANOPARTICLES; FRICTION FACTOR; PARTICLE-SIZE; EQUATIONS; TUBE;
D O I
10.1016/j.expthermflusci.2012.04.017
中图分类号
O414.1 [热力学];
学科分类号
摘要
An experimental study performed to investigate the effect of nanoparticle volume fraction on the convection heat transfer characteristics and pressure drop of TiO2 (30 nm)-water nanofluids with nanoparticle volume fraction between 0.002 and 0.02, and Reynolds number between 8000 and 51,000. The experimental apparatus is a horizontal double tube counter-flow heat exchanger. It is observed that by increasing the Reynolds number or nanoparticle volume fraction, the Nusselt number increases. Meanwhile all nanofluids have a higher Nusselt number compared to distilled water. By use the nanofluid at high Reynolds number (say greater than 30,000) more power compared to low Reynolds number needed to compensate the pressure drop of nanofluid, while increments in the Nusselt number for all Reynolds numbers are approximately equal. Therefore using nanofluids at high Reynolds numbers compared with low Reynolds numbers, have lower benefits. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 39 条
[1]   Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium [J].
Allouni, Zouhir E. ;
Cimpan, Mihaela R. ;
Hol, Paul J. ;
Skodvin, Tore ;
Gjerdet, Nils R. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2009, 68 (01) :83-87
[2]   Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region [J].
Amrollahi, A. ;
Rashidi, A. M. ;
Lotfi, R. ;
Meibodi, M. Emami ;
Kashefi, K. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2010, 37 (06) :717-723
[3]   Effect of particle size on the convective heat transfer in nanofluid in the developing region [J].
Anoop, K. B. ;
Sundararajan, T. ;
Das, Sarit K. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (9-10) :2189-2195
[4]  
Bejan, 2004, Convection Heat Transfer
[5]   Convective transport in nanofluids [J].
Buongiorno, J .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (03) :240-250
[6]  
Choi SUS., 1995, ENHANCING THERMAL CO, V8, P281, DOI [10.1021/je60018a001, DOI 10.1115/1.1532008]
[7]   Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids [J].
Corcione, Massimo .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) :789-793
[8]   An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime [J].
Duangthongsuk, Weerapun ;
Wongwises, Somchai .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (1-3) :334-344
[9]   Heat transfer of nanofluids in a shell and tube heat exchanger [J].
Farajollahi, B. ;
Etemad, S. Gh. ;
Hojjat, M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (1-3) :12-17
[10]   Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube [J].
Fotukian, S. M. ;
Esfahany, M. Nasr .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2010, 31 (04) :606-612