Ship collision analysis on offshore wind turbine monopile foundations

被引:49
作者
Bela, Andreea [1 ]
Le Sourne, Herve [2 ]
Buldgen, Loic [1 ]
Rigo, Philippe [1 ]
机构
[1] Univ Liege, ANAST, Allee Decouverte 9, B-4000 Liege, Belgium
[2] ICAM Nantes, CNRS, GeM Inst, UMR 6183, 35 Ave Champ Manoeuvres, F-44470 Carquefou, France
关键词
Offshore wind turbine; Ship collision; Monopile; Nonlinear finite element analysis; Crashworthiness;
D O I
10.1016/j.marstruc.2016.10.009
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
An offshore wind farm can be located close to traffic lanes of commercial and passenger ships, which may lead to possible collision. The work presented in this paper aims to understand both the crushing behaviour and the nacelle dynamics of a monopile offshore wind turbine when impacted by a ship. Another objective was to deeply investigate the influence of various parameters like ship impact velocity and location, wind direction, soil stiffness and deformability of the striking ship. First, nonlinear numerical simulations of ship - Offshore Wind Turbine (OWT) collisions have been carried out with a rigid striking ship for a better understanding of the OWT's structural behaviour during collision. Different configurations for the wind turbine's structure have been used in order to highlight the modifications in behaviour induced by changing the soil conditions or the loading scenario. The resulting resistant force and internal energies have been compared as well as the tower top (nacelle) displacements and accelerations. Then, another series of simulations have been performed with a deformable ship in order to investigate the influence of the deformability of the striking ship on the OWT's behaviour. It was shown that a slight variation of the impact velocity can lead to consequences ranging from minor damage of the OWT to collapse. Furthermore, the behaviour of the OWT during collision is highly sensitive to wind loads as it was shown that in some cases the OWT can collapse for an impact velocity of only 3 m/s and, in the worst case, can fall directly on the ship. The results obtained showed that it is important to account for the soil flexibility when performing collision simulations because considering the monopile as being clamped at the base would lead to an overestimation of the plastic deformation of the collided structure. Moreover, when the OWT is collided by a deformable striking ship, the deformations of the OWT are 2 times smaller comparing to the deformations caused by impact with a rigid ship and the structure can withstand collisions without collapsing with an impact velocity up to 6 mks. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:220 / 241
页数:22
相关论文
共 27 条
[1]  
[Anonymous], 2015, MARSTRUCT 2015 5 INT
[2]  
[Anonymous], MARUCT 2014 5 INT C
[3]  
[Anonymous], 11 INT OFFSH POL ENG
[4]  
[Anonymous], 2013, LS DYNA USERS MANUAL
[5]  
[Anonymous], THESIS
[6]  
[Anonymous], J KOREAN SOC COAST O
[7]  
[Anonymous], 2004, NORSOK STANDARD N-004
[8]  
[Anonymous], 2014, DNV-OS-J101: Design of Offshore Wind Turbine Structures
[9]  
[Anonymous], 2013, LS-DYNA User's Manuals Version 971
[10]  
[Anonymous], P 7 INT C COLL GROUN