Homoclinic shadowing and its application to chaotic systems

被引:2
作者
Li Xiliang [1 ]
Li Xuemei [2 ]
Zheng Zuohuan [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2008年 / 18卷 / 05期
关键词
chaos; pseudo orbits; shadowing; exponential dichotomy; transversal homoclinic points; weakly periodic orbits;
D O I
10.1142/S021812740802104X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In our paper, by using shadowing techniques, we develop a general method for establishing the existence of a transversal homoclinic orbit to a periodic orbit of C-Lip(1) diffeomorphisms in R-n which implies the occurrence of chaos.
引用
收藏
页码:1363 / 1375
页数:13
相关论文
共 41 条
[1]  
AFRAIMOVICH VS, 2003, STUDIES ADV MATH, V28, P117
[2]  
ALLIGOOOD KT, 1997, CHAOS INTRO DYNAMICA
[3]  
[Anonymous], 1969, P STEKLOV I MATH
[4]  
ANOSOV DV, 1995, DYNAMICAL SYSTEMS, V9
[5]   PERIODIC ORBITS FOR HYPERBOLIC FLOWS [J].
BOWEN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1972, 94 (01) :1-&
[6]  
BOWEN R, 1975, J DIFFER EQUATIONS, V18, P333, DOI 10.1016/0022-0396(75)90065-0
[7]  
Bowen R., 1978, CBMS REGIONAL C SERI, V35
[8]  
Bowen R, 1970, P S PURE MATH, VXIV
[9]   Secure synchronization of a class of chaotic systems from a nonlinear observer approach [J].
Celikovsky, S ;
Chen, GR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (01) :76-82
[10]   On LaSalle's invariance principle and its application to robust synchronization of general vector Lienard equations [J].
Chen, GR ;
Zhou, J ;
Celikovsky, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (06) :869-874