Nanoscale rotational deformation near crack tips in nanocrystalline solids

被引:25
作者
Ovid'ko, I. A. [1 ,2 ]
Sheinerman, A. G. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] St Petersburg State Univ, Dept Math & Mech, St Petersburg 198504, Russia
关键词
GRAIN ROTATION; DISLOCATIONS; NUCLEATION; MIGRATION; EMISSION; DUCTILE; METALS; STRAIN;
D O I
10.1088/0022-3727/45/33/335301
中图分类号
O59 [应用物理学];
学科分类号
摘要
A special physical micromechanism of plastic flow in pre-cracked nanocrystalline solids is suggested and theoretically described. The micromechanism represents the fast nanoscale rotational deformation (NRD) occurring through collective events of ideal nanoscale shear near crack tips. We calculated the stress and energy characteristics of the NRD. It has been found that such rotational deformation can effectively occur near crack tips and enhance fracture toughness of nanocrystalline materials. Our theoretical model accounts for the in situ experimental observations (Ke et al 1995 Nanostruct. Mater. 5 689, Shan et al 2008 Phys. Rev. Lett. 100 105502, Cheng et al 2010 Phys. Rev. Lett. 104 255501, Liu et al 2011 Scripta Mater. 64 343) of crystal lattice rotations within nanoscale grains and formation of modulated/agglomerated grain structures near crack tips in deformed nanocrystalline solids with finest grains.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Chemical-solution deposition and nonlinear dielectric characteristics of nanocrystalline (Pb0.5Sr0.5)TiO3 thin films [J].
Ambika, D. ;
Kumar, V. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (06)
[2]   Role of crack blunting in ductile versus brittle response of crystalline materials [J].
Beltz, GE ;
Lipkin, DM ;
Fischer, LL .
PHYSICAL REVIEW LETTERS, 1999, 82 (22) :4468-4471
[3]   Tight-binding calculations of stacking energies and twinnability in fcc metals [J].
Bernstein, N ;
Tadmor, EB .
PHYSICAL REVIEW B, 2004, 69 (09)
[4]   Effects of intergrain sliding on crack growth in nanocrystalline materials [J].
Bobylev, S. V. ;
Mukherjee, A. K. ;
Ovid'ko, I. A. ;
Sheinerman, A. G. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2010, 26 (11) :1629-1644
[5]   Cooperative Grain Boundary Sliding and Migration Process in Nanocrystalline Solids [J].
Bobylev, S. V. ;
Morozov, N. F. ;
Ovid'ko, I. A. .
PHYSICAL REVIEW LETTERS, 2010, 105 (05)
[6]   Nanodisturbances in Deformed Nanowires [J].
Bobylev, S. V. ;
Ovid'ko, I. A. .
PHYSICAL REVIEW LETTERS, 2009, 103 (13)
[7]   Rolling deformation induced reduction of rate sensitivity and enhancement of hardness in nanocrystalline NiFe alloys [J].
Cao, Z. H. ;
Li, P. Y. ;
Jiang, Z. H. ;
Meng, X. K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (29)
[8]   Approaches to investigate delamination and interfacial toughness in coated systems: an overview [J].
Chen, Jinju ;
Bull, S. J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (03)
[9]   Structure Modulation Driven by Cyclic Deformation in Nanocrystalline NiFe [J].
Cheng, Sheng ;
Zhao, Yonghao ;
Wang, Yinmin ;
Li, Ying ;
Wang, Xun-Li ;
Liaw, Peter K. ;
Lavernia, Enrique J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[10]   Reversible Movement of Homogenously Nucleated Dislocations in a β-Titanium Alloy [J].
Cui, J. P. ;
Hao, Y. L. ;
Li, S. J. ;
Sui, M. L. ;
Li, D. X. ;
Yang, R. .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)