Luders-like martensitic transformation in a Cu/carbon-steel nanocomposite: An in situ synchrotron study

被引:3
作者
Ru, Yadong [1 ]
Yu, Kaiyuan [1 ]
Dai, Shuangqiang [1 ]
Guo, Fangmin [1 ]
Hao, Shijie [1 ]
Ren, Yang [2 ]
Cui, Lishan [1 ,3 ]
机构
[1] China Univ Petr, Dept Mat Sci & Engn, Beijing 102249, Peoples R China
[2] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] China Univ Petr, Beijing Key Lab Failure Corros & Protect Oil Gas, Beijing 102249, Peoples R China
关键词
Retained austenite; Martensitic transformation; Luders-like; In situ synchrotron X-ray diffraction; LATTICE-PARAMETER VARIATION; INDUCED-PLASTICITY STEEL; AUSTENITE GRAIN-SIZE; X-RAY-DIFFRACTION; RETAINED AUSTENITE; MECHANICAL-BEHAVIOR; PEARLITIC STEEL; CARBON CONTENT; DEFORMATION; STABILITY;
D O I
10.1016/j.jallcom.2018.01.154
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A Cu/carbon-steel nanocomposite is fabricated by pressing, rolling and wire drawing. The average layer thickness is about 69 nm for steel and 67 nm for Cu. Cu suppresses the growth of prior austenite at elevated temperature, and thus the steel layer thickness barely increases during austenization. Subsequent quenching results in a large amount of metastable retained austenite within the steel layers. The martensitic transformation behavior of the composite during plastic deformation is investigated by in situ tensile test using synchrotron X-ray diffraction at room temperature. It is found that the retained austenite, rather than Cu, dominates the plastic deformation of the nanocomposite. In situ results verify that the transformation of retained austenite initiates in a manner of Luders-like band due to stress-induced martensitic transformation, followed by strain-induced martensitic transformation until fracture. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:693 / 699
页数:7
相关论文
共 55 条
[1]   Strengthening and mechanical stability mechanisms in nanostructured bainite [J].
Avishan, Behzad ;
Garcia-Mateo, Carlos ;
Morales-Rivas, Lucia ;
Yazdani, Sasan ;
Caballero, Francisca G. .
JOURNAL OF MATERIALS SCIENCE, 2013, 48 (18) :6121-6132
[2]   The first bulk nanostructured metal [J].
Bhadeshia, H. K. D. H. .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2013, 14 (01)
[3]   Nanostructured bainite [J].
Bhadeshia, H. K. D. H. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2113) :3-18
[4]   An assessment of the contributing factors to the superior properties of a nanostructured steel using in situ high-energy X-ray diffraction [J].
Cheng, S. ;
Wang, Y. D. ;
Choo, H. ;
Wang, X. -L. ;
Almer, J. D. ;
Liaw, P. K. ;
Lee, Y. K. .
ACTA MATERIALIA, 2010, 58 (07) :2419-2429
[5]  
Cheng S., 2011, J MATER RES, V23, P1578
[6]  
Cottrell A.H., 1948, REPORT C STRENGTH SO, P30
[7]   DISLOCATION THEORY OF YIELDING AND STRAIN AGEING OF IRON [J].
COTTRELL, AH ;
BILBY, BA .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1949, 62 (349) :49-62
[8]   Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J].
Dao, M. ;
Lu, L. ;
Asaro, R. J. ;
De Hosson, J. T. M. ;
Ma, E. .
ACTA MATERIALIA, 2007, 55 (12) :4041-4065
[9]   Structure-properties relationship in TRIP steels containing carbide-free bainite [J].
De Cooman, BC .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (3-4) :285-303
[10]   Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels [J].
De Moor, E. ;
Lacroix, S. ;
Clarke, A. J. ;
Penning, J. ;
Speer, J. G. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2008, 39A (11) :2586-2595