Operators on the Frechet sequence spaces ces(p+), 1 ≤ p < ∞

被引:0
作者
Albanese, Angela A. [1 ]
Bonet, Jose [2 ]
Ricker, Werner J. [3 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, CP 193, I-73100 Lecce, Italy
[2] Univ Politecn Valencia, IUMPA, Valencia 46071, Spain
[3] Katholische Univ Eichstatt Ingolstadt, Math Geog Fak, D-85072 Eichstatt, Germany
关键词
Frechet space; Sequence space ces(p plus ); Spectrum; Multiplier operator; Cesaro operator; Mean ergodic operator;
D O I
10.1007/s13398-018-0564-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Frechet sequence spaces ces(p+) are very different to the Frechet sequence spaces p+,1p<, that generate them, (Albanese et al. in J Math Anal Appl 458:1314-1323, 2018). The aim of this paper is to investigate various properties (eg. continuity, compactness, mean ergodicity) of certain linear operators acting in and between the spaces ces(p+), such as the Cesaro operator, inclusion operators and multiplier operators. Determination of the spectra of such classical operators is an important feature. It turns out that both the space of multiplier operators M(ces(p+)) and its subspace Mc(ces(p+)) consisting of the compact multiplier operators are independent of p. Moreover, Mc(ces(p+)) can be topologized so that it is the strong dual of the Frechet-Schwartz space ces(1+) and (Mc(ces(p+))similar or equal to ces(1+) is a proper subspace of the Kothe echelon Frechet space M(ces(p+))=(A),1p<, for a suitable matrix A.
引用
收藏
页码:1533 / 1556
页数:24
相关论文
共 24 条
  • [1] Albanese AA, 2019, POSITIVITY, V23, P177, DOI 10.1007/s11117-018-0601-6
  • [2] The Frechet spaces ces(p+), 1 < p < ∞
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) : 1314 - 1323
  • [3] THE CESARO OPERATOR IN THE FRECHET SPACES lp+ AND Lp-
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2017, 59 (02) : 273 - 287
  • [4] Albanese AA, 2009, ANN ACAD SCI FENN-M, V34, P401
  • [5] [Anonymous], 1973, Topological Vector Spaces
  • [6] BANACH SPACES OF COMPACT MULTIPLIERS AND THEIR DUAL SPACES
    BACHELIS, GF
    GILBERT, JE
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1972, 125 (04) : 285 - &
  • [7] Bennett G, 1996, MEM AM MATH SOC, V120, pR8
  • [8] The canonical spectral measure in Kothe echelon spaces
    Bonet, J
    Ricker, WJ
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) : 477 - 496
  • [9] Some properties of N-supercyclic operators
    Bourdon, PS
    Feldman, NS
    Shapiro, JH
    [J]. STUDIA MATHEMATICA, 2004, 165 (02) : 135 - 157
  • [10] CONCERNING PERFECT FRECHET SPACES AND DIAGONAL TRANSFORMATIONS
    CROFTS, G
    [J]. MATHEMATISCHE ANNALEN, 1969, 182 (01) : 67 - &