Source reconstruction of airborne toxics based on acute health effects information

被引:11
作者
Argyropoulos, Christos D. [1 ,2 ]
Elkhalifa, Samar [1 ,2 ]
Fthenou, Eleni [3 ]
Efthimiou, George C. [4 ]
Andronopoulos, Spyros [4 ]
Venetsanos, Alexandros [4 ]
Kovalets, Ivan V. [5 ]
Kakosimos, Konstantinos E. [1 ,2 ]
机构
[1] Texas A&M Univ Qatar, Dept Chem Engn, POB 23874, Doha, Qatar
[2] Texas A&M Univ Qatar, Mary Kay OConnor Proc Safety Ctr, POB 23874, Doha, Qatar
[3] Qatar Biobank Med Res, Doha 5825, Qatar
[4] NCSR Demokritos, Environm Res Lab, INRASTES, Patriarchou Grigoriou & Neapoleos Str, Athens 15310, Greece
[5] Natl Acad Sci Ukraine, Inst Math Machine & Syst Problems, Dept Environm Modelling, Kiev, Ukraine
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
ENSEMBLE KALMAN FILTER; ATMOSPHERIC DISPERSION; DATA ASSIMILATION; POINT-SOURCE; GAS DISPERSION; TRACER SOURCE; EMISSION; EXPOSURE; MODEL; IDENTIFICATION;
D O I
10.1038/s41598-018-23767-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The intentional or accidental release of airborne toxics poses great risk to the public health. During these incidents, the greatest factor of uncertainty is related to the location and rate of released substance, therefore, an information of high importance for emergency preparedness and response plans. A novel computational algorithm is proposed to estimate, efficiently, the location and release rate of an airborne toxic substance source based on health effects observations; data that can be readily available, in a real accident, contrary to actual measurements. The algorithm is demonstrated by deploying a semi-empirical dispersion model and Monte Carlo sampling on a simplified scenario. Input data are collected at varying receptor points for toxics concentrations (C; standard approach) and two new types: toxic load (TL) and health effects (HE; four levels). Estimated source characteristics are compared with scenario values. The use of TL required the least number of receptor points to estimate the release rate, and demonstrated the highest probability (>90%). HE required more receptor points, than C, but with lesser deviations while probability was comparable, if not better. Finally, the algorithm assessed very accurately the source location when using C and TL with comparable confidence, but HE demonstrated significantly lower confidence.
引用
收藏
页数:13
相关论文
共 84 条
[1]   Improving pollutant source characterization by better estimating wind direction with a genetic algorithm [J].
Allen, Christopher T. ;
Young, George S. ;
Haupt, Sue Ellen .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (11) :2283-2289
[2]  
[Anonymous], 2015, ES1006 COST
[3]   Mathematical modelling and computer simulation of toxic gas building infiltration [J].
Argyropoulos, C. D. ;
Ashraf, A. M. ;
Markatos, N. C. ;
Kakosimos, K. E. .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2017, 111 :687-700
[4]   Modelling pollutants dispersion and plume rise from large hydrocarbon tank fires in neutrally stratified atmosphere [J].
Argyropoulos, C. D. ;
Sideris, G. M. ;
Christolis, M. N. ;
Nivolianitou, Z. ;
Markatos, N. C. .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (06) :803-813
[5]  
Argyropoulos C. D., 2017, 18 INT C HARM ATM DI
[6]  
Argyropoulos CD, 2 INT C EN IND ENV H
[7]  
Ashraf A. M., 2016, HAZARDS
[8]  
Assael M.J., 2010, Fires, explosions, and toxic gas dispersions: effects calculation and risk analysis
[9]  
Beck U., 1992, Risk Society : Towards a New Modernity, Theory, Culture Society
[10]   Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models [J].
Bocquet, M. ;
Elbern, H. ;
Eskes, H. ;
Hirtl, M. ;
Zabkar, R. ;
Carmichael, G. R. ;
Flemming, J. ;
Inness, A. ;
Pagowski, M. ;
Perez Camano, J. L. ;
Saide, P. E. ;
San Jose, R. ;
Sofiev, M. ;
Vira, J. ;
Baklanov, A. ;
Carnevale, C. ;
Grell, G. ;
Seigneur, C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (10) :5325-5358