Scanning Transmission Electron Microscopy in a Scanning Electron Microscope for the High-Throughput Imaging of Biological Assemblies

被引:9
作者
Parker, Kelly A. [1 ]
Ribet, Stephanie [1 ]
Kimmel, Blaise R. [2 ]
dos Reis, Roberto [1 ,3 ]
Mrksich, Milan [4 ,5 ]
Dravid, Vinayak P. [1 ,3 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Northwestern Univ Atom & Nanoscale Characterizat, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[5] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
KV; DAMAGE;
D O I
10.1021/acs.biomac.2c00323
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electron microscopy of soft and biological materials, or "soft electron microscopy", is essential to the characterization of macromolecules. Soft microscopy is governed by enhancing contrast while maintaining low electron doses, and sample preparation and imaging methodologies are driven by the length scale of features of interest. While cryo-electron microscopy offers the highest resolution, larger structures can be characterized efficiently and with high contrast using low-voltage electron microscopy by performing scanning transmission electron microscopy in a scanning electron microscope (STEM-in-SEM). Here, STEM-in-SEM is demonstrated for a four-lobed protein assembly where the arrangement of the proteins in the construct must be examined. STEM image simulations show the theoretical contrast enhancement at SEM-level voltages for unstained structures, and experimental images with multiple STEM modes exhibit the resolution possible for negative-stained proteins. This technique can be extended to complex protein assemblies, larger structures such as cell sections, and hybrid materials, making STEM-in-SEM a valuable high-throughput imaging method.
引用
收藏
页码:3235 / 3242
页数:8
相关论文
共 37 条
[1]   Analysis of aggregates of human immunoglobulin G using size-exclusion chromatography, static and dynamic light scattering [J].
Ahrer, K ;
Buchacher, A ;
Iberer, G ;
Josic, D ;
Jungbauer, A .
JOURNAL OF CHROMATOGRAPHY A, 2003, 1009 (1-2) :89-96
[2]   Visualizing Proteins and Macromolecular Complexes by Negative Stain EM: from Grid Preparation to Image Acquisition [J].
Booth, David S. ;
Avila-Sakar, Agustin ;
Cheng, Yifan .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2011, (58)
[3]   SINGLE PARTICLE ANALYSIS AT HIGH RESOLUTION [J].
Cong, Yao ;
Ludtke, Steven J. .
METHODS IN ENZYMOLOGY, VOL 482: CRYO-EM, PART B: 3-D RECONSTRUCTION, 2010, 482 :211-235
[4]   Prismatic 2.0-Simulation software for scanning and high resolution transmission electron microscopy (STEM and HRTEM) [J].
DaCosta, Luis Rangel ;
Brown, G. Hamish ;
Pelz, M. Philipp ;
Rakowski, Alexander ;
Barber, Natolya ;
O'Donovan, Peter ;
McBean, Patrick ;
Jones, Lewys ;
Ciston, Jim ;
Scott, M. C. ;
Ophus, Colin .
MICRON, 2021, 151
[5]   Effects of drying conditions on some physical properties of soy protein films [J].
Denavi, G. ;
Tapia-Blacido, D. R. ;
Anon, M. C. ;
Sobral, P. J. A. ;
Mauri, A. N. ;
Menegalli, F. C. .
JOURNAL OF FOOD ENGINEERING, 2009, 90 (03) :341-349
[6]   Control of radiation damage in the TEM [J].
Egerton, R. F. .
ULTRAMICROSCOPY, 2013, 127 :100-108
[7]   Surface protein characterization of human adipose tissue-derived stromal cells [J].
Gronthos, S ;
Franklin, DM ;
Leddy, HA ;
Robey, PG ;
Storms, RW ;
Gimble, JM .
JOURNAL OF CELLULAR PHYSIOLOGY, 2001, 189 (01) :54-63
[8]  
Hall C.E., 1953, INTRO ELECT MICROSCO
[9]   Extrinsic fluorescent dyes as tools for protein characterization [J].
Hawe, Andrea ;
Sutter, Marc ;
Jiskoot, Wim .
PHARMACEUTICAL RESEARCH, 2008, 25 (07) :1487-1499
[10]   High speed/low dose analytical electron microscopy with dynamic sampling [J].
Hujsak, Karl A. ;
Roth, Eric W. ;
Kellogg, William ;
Li, Yue ;
Dravid, Vinayak P. .
MICRON, 2018, 108 :31-40