Multilayer Broadband Antireflective Coatings for More Efficient Thin Film CdTe Solar Cells

被引:56
作者
Kaminski, P. M. [1 ]
Lisco, F. [1 ]
Walls, J. M. [1 ]
机构
[1] Univ Loughborough, Sch Elect Elect & Syst Engn, Ctr Renewable Energy Syst Technol, Loughborough LE11 3TU, Leics, England
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2014年 / 4卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Antireflective coating (ARC); CdTe; photovoltaics (PVs); solar cells; sputtering; DESIGN;
D O I
10.1109/JPHOTOV.2013.2284064
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reflection losses limit the efficiency of all types of photovoltaic devices. The first reflection loss occurs at the glass-air interface of the photovoltaic module. If no light trapping mechanism is used about 4% of the solar energy is lost at this surface. Currently, most commercial thin-film CdTe solar modules are manufactured using NSG TEC10 glass, with no light trapping mechanism addressing the reflection at the interface of the glass with the atmosphere. To minimize the losses, a broadband multilayer thin-film coating has been designed and deposited onto the glass surface of a thin-film CdTe solar cell. The coating consisted of four dielectric layers of alternating thin films of ZrO2 and SiO2. The layers were deposited by using high-rate-pulsed dc magnetron sputtering. Spectrophotometer measurements confirm that the transmission increased by between 2% and 5% over the spectrum utilized by the thin-film CdTe solar cell. The weighted average reflection reduced from 4.22% to 1.24%. Standard test conditions (STC) solar simulator measurements confirmed a 0.38% increase in absolute efficiency and a 3.6% relative increase in efficiency.
引用
收藏
页码:452 / 456
页数:5
相关论文
共 14 条
[1]  
[Anonymous], OPT WORLD
[2]   Solar cell efficiency tables (version 42) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (05) :827-837
[3]  
Kephart JM, 2012, 2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), P854, DOI 10.1109/PVSC.2012.6317737
[4]  
KERN W, 1970, RCA REV, V31, P187
[5]   Realization of a near-perfect antireflection coating for silicon solar energy utilization [J].
Kuo, Mei-Ling ;
Poxson, David J. ;
Kim, Yong Sung ;
Mont, Frank W. ;
Kim, Long Kyu ;
Schuhert, E. Fred ;
Lin, Shawn-Yu .
OPTICS LETTERS, 2008, 33 (21) :2527-2529
[6]  
Macleod Angus., 2012, OPTICAL COATING DESI
[7]   Analytical design of antireflection coatings for silicon photovoltaic devices [J].
Nubile, P .
THIN SOLID FILMS, 1999, 342 (1-2) :257-261
[8]   Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings [J].
Oh, Seung Jae ;
Chhajed, Sameer ;
Poxson, David J. ;
Cho, Jaehee ;
Schubert, E. Fred ;
Tark, Sung Ju ;
Kim, Donghwan ;
Kim, Jong Kyu .
OPTICS EXPRESS, 2013, 21 (01) :A157-A166
[9]   ADVANCES IN HIGH-RATE SPUTTERING WITH MAGNETRON-PLASMATRON PROCESSING AND INSTRUMENTATION [J].
SCHILLER, S ;
HEISIG, U ;
GOEDICKE, K ;
SCHADE, K ;
TESCHNER, G ;
HENNEBERGER, J .
THIN SOLID FILMS, 1979, 64 (03) :455-467
[10]   ALTERNATING ION PLATING - METHOD OF HIGH-RATE ION VAPOR-DEPOSITION [J].
SCHILLER, S ;
HEISIG, U ;
GOEDICKE, K .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1975, 12 (04) :858-864