Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth

被引:14
作者
Abraham, Abin [1 ,2 ]
Le, Brian [3 ]
Kosti, Idit [3 ,4 ]
Straub, Peter [1 ,5 ]
Velez-Edwards, Digna R. [1 ,6 ,7 ]
Davis, Lea K. [1 ,8 ,9 ]
Newton, J. M. [7 ]
Muglia, Louis J. [10 ]
Rokas, Antonis [6 ,11 ]
Bejan, Cosmin A. [6 ]
Sirota, Marina [3 ,4 ]
Capra, John A. [1 ,3 ,6 ,11 ]
机构
[1] Vanderbilt Univ, Vanderbilt Genet Inst, 221 Kirkland Hall, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Med Ctr, Nashville, TN 37232 USA
[3] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Pediat, San Francisco, CA USA
[5] Vanderbilt Univ, Med Ctr, Dept Med, Div Genet Med, Nashville, TN USA
[6] Vanderbilt Univ, Med Ctr, Dept Biomed Informat, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Med Ctr, Dept Obstet & Gynecol, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Med Ctr, Dept Med, Nashville, TN USA
[9] Vanderbilt Univ, Dept Psychiat & Behav Sci, Div Genet Med, Med Ctr, Nashville, TN USA
[10] Burroughs Wellcome Fund, Res Triangle Pk, NC USA
[11] Vanderbilt Univ, Dept Biol Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
基金
美国国家卫生研究院;
关键词
Preterm birth; Machine learning; Electronic health records; Artificial intelligence; SYSTEMATIC ANALYSIS; PERINATAL OUTCOMES; GESTATIONAL-AGE; RISK-FACTORS; PREGNANCY; EPIDEMIOLOGY; MORTALITY; WOMEN; MANAGEMENT; MEDICINE;
D O I
10.1186/s12916-022-02522-x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Identifying pregnancies at risk for preterm birth, one of the leading causes of worldwide infant mortality, has the potential to improve prenatal care. However, we lack broadly applicable methods to accurately predict preterm birth risk. The dense longitudinal information present in electronic health records (EHRs) is enabling scalable and cost-efficient risk modeling of many diseases, but EHR resources have been largely untapped in the study of pregnancy. Methods Here, we apply machine learning to diverse data from EHRs with 35,282 deliveries to predict singleton preterm birth. Results We find that machine learning models based on billing codes alone can predict preterm birth risk at various gestational ages (e.g., ROC-AUC = 0.75, PR-AUC = 0.40 at 28 weeks of gestation) and outperform comparable models trained using known risk factors (e.g., ROC-AUC = 0.65, PR-AUC = 0.25 at 28 weeks). Examining the patterns learned by the model reveals it stratifies deliveries into interpretable groups, including high-risk preterm birth subtypes enriched for distinct comorbidities. Our machine learning approach also predicts preterm birth subtypes (spontaneous vs. indicated), mode of delivery, and recurrent preterm birth. Finally, we demonstrate the portability of our approach by showing that the prediction models maintain their accuracy on a large, independent cohort (5978 deliveries) from a different healthcare system. Conclusions By leveraging rich phenotypic and genetic features derived from EHRs, we suggest that machine learning algorithms have great potential to improve medical care during pregnancy. However, further work is needed before these models can be applied in clinical settings.
引用
收藏
页数:21
相关论文
共 85 条
[1]   Personalized Medicine and the Power of Electronic Health Records [J].
Abul-Husn, Noura S. ;
Kenny, Eimear E. .
CELL, 2019, 177 (01) :58-69
[2]   Recurrence of preterm birth in twin pregnancies in the presence of a prior singleton preterm birth [J].
Ananth, Cande V. ;
Kirby, Russell S. ;
Vintzileos, Anthony M. .
JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2008, 21 (05) :289-295
[3]   Prediction of gestational diabetes based on nationwide electronic health records [J].
Artzi, Nitzan Shalom ;
Shilo, Smadar ;
Hadar, Eran ;
Rossman, Hagai ;
Barbash-Hazan, Shiri ;
Ben-Haroush, Avi ;
Balicer, Ran D. ;
Feldman, Becca ;
Wiznitzer, Arnon ;
Segal, Eran .
NATURE MEDICINE, 2020, 26 (01) :71-+
[4]   Association between maternal comorbidity and preterm birth by severity and clinical subtype: retrospective cohort study [J].
Auger, Nathalie ;
Thi Uyen Nhi Le ;
Park, Alison L. ;
Luo, Zhong-Cheng .
BMC PREGNANCY AND CHILDBIRTH, 2011, 11
[5]   Prediction and associations of preterm birth and its subtypes with eicosanoid enzymatic pathways and inflammatory markers [J].
Aung, Max T. ;
Yu, Youfei ;
Ferguson, Kelly K. ;
Cantonwine, David E. ;
Zeng, Lixia ;
McElrath, Thomas F. ;
Pennathur, Subramaniam ;
Mukherjee, Bhramar ;
Meeker, John D. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[6]   Pre-pregnancy or first-trimester risk scoring to identify women at high risk of preterm birth [J].
Baer, Rebecca J. ;
McLemore, Monica R. ;
Adler, Nancy ;
Oltman, Scott P. ;
Chambers, Brittany D. ;
Kuppermann, Miriam ;
Pantell, Matthew S. ;
Rogers, Elizabeth E. ;
Ryckman, Kelli K. ;
Sirota, Marina ;
Rand, Larry ;
Jelliffe-Pawlowski, Laura L. .
EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2018, 231 :235-240
[7]   The Distribution of Clinical Phenotypes of Preterm Birth Syndrome Implications for Prevention [J].
Barros, Fernando C. ;
Papageorghiou, Aris T. ;
Victora, Cesar G. ;
Noble, Julia A. ;
Pang, Ruyan ;
Lams, Jay ;
Ismail, Leila Cheikh ;
Goldenberg, Robert L. ;
Lambert, Ann ;
Kramer, Michael S. ;
Carvalho, Maria ;
Conde-Agudelo, Agustin ;
Jaffer, Yasmin A. ;
Bertino, Enrico ;
Gravett, Michael G. ;
Altman, Doug G. ;
Ohuma, Eric O. ;
Purwar, Manorama ;
Frederick, Lhunnaya O. ;
Bhutta, Zulfigar A. ;
Kennedy, Stephen H. ;
Villar, Jose .
JAMA PEDIATRICS, 2015, 169 (03) :220-229
[8]  
Behrman RE., 2007, PRETERM BIRTH CAUSES
[9]   National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications [J].
Blencowe, Hannah ;
Cousens, Simon ;
Oestergaard, Mikkel Z. ;
Chou, Doris ;
Moller, Ann-Beth ;
Narwal, Rajesh ;
Adler, Alma ;
Garcia, Claudia Vera ;
Rohde, Sarah ;
Say, Lale ;
Lawn, Joy E. .
LANCET, 2012, 379 (9832) :2162-2172
[10]   The contribution of preterm birth to infant mortality rates in the United States [J].
Callaghan, William M. ;
MacDorman, Marian F. ;
Rasmussen, Sonja A. ;
Qin, Cheng ;
Lackritz, Eve M. .
PEDIATRICS, 2006, 118 (04) :1566-1573