Truncation analysis for the derivative Schrodinger equation

被引:0
作者
Xu, PC
Chang, QS [1 ]
Guo, BL
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
derivative nonlinear Schrodinger equation; geometric singular perturbation theory; Melnikov's technique;
D O I
10.1007/s101140100148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The truncation equation for the derivative nonlinear Schrodinger equation has been discussed in this paper. The existence of a special heteroclinic orbit has been found by using geometrical singular perturbation theory together with Melnikov's technique.
引用
收藏
页码:137 / 146
页数:10
相关论文
共 8 条
[2]  
Haller G, 1999, COMMUN PUR APPL MATH, V52, P1
[3]   ORBITS HOMOCLINIC TO RESONANCES, WITH AN APPLICATION TO CHAOS IN A MODEL OF THE FORCED AND DAMPED SINE-GORDON EQUATION [J].
KOVACIC, G ;
WIGGINS, S .
PHYSICA D, 1992, 57 (1-2) :185-225
[5]  
Li Y, 1996, COMMUN PUR APPL MATH, V49, P1175, DOI 10.1002/(SICI)1097-0312(199611)49:11<1175::AID-CPA2>3.0.CO
[6]  
2-9
[7]  
WIGGINS S, 1993, PHASE SPACE TRANSPOR
[8]  
Wiggins S., 1994, Normally hyperbolic invariant manifolds in dynamical systems, V105