The photospheric solar oxygen project - I. Abundance analysis of atomic lines and influence of atmospheric models

被引:212
作者
Caffau, E. [1 ]
Ludwig, H. -G. [1 ]
Steffen, M. [2 ]
Ayres, T. R. [3 ]
Bonifacio, P. [1 ,4 ]
Cayrel, R. [5 ]
Freytag, B. [6 ,7 ]
Plez, B. [7 ,8 ]
机构
[1] Univ Paris Diderot, GEPI, Observ Paris, CNRS, F-92195 Meudon, France
[2] Astrophys Inst Potsdam, D-14482 Potsdam, Germany
[3] Univ Colorado 389 UCB CASA, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA
[4] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy
[5] Univ Paris Diderot, GEPI, Observ Paris, CNRS, F-75014 Paris, France
[6] Univ Lyon, Ecole Normale Super Lyon, CRAL, CNRS,UMR 5574, F-69364 Lyon 7, France
[7] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden
[8] Univ Montpellier 2, GRAAL, CNRS, UMR 5024, F-34095 Montpellier 5, France
关键词
Sun : abundances; Sun : photosphere; line : formation; hydrodynamics; convection; radiative transfer;
D O I
10.1051/0004-6361:200809885
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The solar oxygen abundance has undergone a major downward revision in the past decade, the most noticeable one being the update including 3D hydrodynamical simulations to model the solar photosphere. Up to now, such an analysis has only been carried out by one group using one radiation-hydrodynamics code. Aims. We investigate the photospheric oxygen abundance considering lines from atomic transitions. We also consider the relationship between the solar model used and the resulting solar oxygen abundance, to understand whether the downward abundance revision is specifically related to 3D hydrodynamical effects. Methods. We performed a new determination of the solar photospheric oxygen abundance by analysing different high-resolution high signal-to-noise ratio atlases of the solar flux and disc-centre intensity, making use of the latest generation of CO5BOLD 3D solar model atmospheres. Results. We find 8.73 <= log (N-O/N-H) + 12 <= 8.79. The lower and upper values represent extreme assumptions on the role of collisional excitation and ionisation by neutral hydrogen for the NLTE level populations of neutral oxygen. The error of our analysis is +/- (0.04 +/- 0.03) dex, the last being related to NLTE corrections, the first error to any other effect. The 3D "granulation effects" do not play a decisive role in lowering the oxygen abundance. Conclusions. Our recommended value is log (N-O/N-H) = 8.76 +/- 0.07, considering our present ignorance of the role of collisions with hydrogen atoms on the NLTE level populations of oxygen. The reasons for lower O abundances in the past are identified as (1) the lower equivalent widths adopted and (2) the choice of neglecting collisions with hydrogen atoms in the statistical equilibrium calculations for oxygen.
引用
收藏
页码:1031 / 1046
页数:16
相关论文
共 79 条