A note on minimal coverings of groups by subgroups

被引:8
作者
Bryce, RA [1 ]
Serena, L
机构
[1] Australian Natl Univ, Sch Math Sci, Canberra, ACT 0200, Australia
[2] Univ Florence, Dipartimento Matemat & Applicaz Architettura, I-50122 Florence, Italy
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 2001年 / 71卷
关键词
D O I
10.1017/S1446788700002809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A cover for a group is a finite set of subgroups whose union is the whole group. A cover is minimal if its cardinality is minimal. Minimal covers of finite soluble groups are categorised; in particular all but at most one of their members are maximal subgroups. A characterisation is given of groups with minimal covers consisting of abelian subgroups.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 12 条
[1]   Subgroup coverings of some linear groups [J].
Bryce, RA ;
Fedri, V ;
Serena, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (02) :227-238
[2]   Covering groups with subgroups [J].
Bryce, RA ;
Fedri, V ;
Serena, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 55 (03) :469-476
[3]  
COHEN JHE, 1994, MATH SCAND, V75, P44
[4]  
Doerk K., 1992, GRUYTER EXP MATH, V4
[5]  
Gaschutz W., 1978, J ALGEBRA, V53, P1
[6]  
Kegel O. H., 1960, MATH Z, V75, P373
[7]  
Neumann B.H., 1954, Publ. Math. (Debr.), V3, P227
[8]  
NEUMANN BH, 1976, J AUSTRAL MATH SOC, V21, P467
[9]  
Passman D., 1968, PERMUTATION GROUPS
[10]  
Suzuki M., 1961, Arch. Math., V12, P241, DOI 10.1007/BF01650557