Bandwidth selection in kernel distribution function estimation

被引:6
作者
Lopez-de-Ullibarri, Ignacio [1 ]
机构
[1] Univ A Coruna, Stat, Ferrol, Spain
关键词
st0404; kcdf; nonparametric estimation; smoothing; cumulative distribution function;
D O I
10.1177/1536867X1501500311
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
I present a new command, kcdf, for bandwidth selection in kernel estimation of the cumulative distribution function. I briefly review plug-in and cross-validation bandwidth selectors, both of which are implemented in kcdf. I then describe the command syntax and illustrate its use with an application to artificial data.
引用
收藏
页码:784 / 795
页数:12
相关论文
共 14 条
[1]   BANDWIDTH SELECTION FOR KERNEL DISTRIBUTION FUNCTION ESTIMATION [J].
ALTMAN, N ;
LEGER, C .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 46 (02) :195-214
[2]   A NOTE ON THE ESTIMATION OF A DISTRIBUTION FUNCTION AND QUANTILES BY A KERNEL-METHOD [J].
AZZALINI, A .
BIOMETRIKA, 1981, 68 (01) :326-328
[3]   Bandwidth selection for the smoothing of distribution functions [J].
Bowman, A ;
Hall, P ;
Prvan, T .
BIOMETRIKA, 1998, 85 (04) :799-808
[4]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[6]   A bias reducing technique in kernel distribution function estimation [J].
Kim, Choongrak ;
Kim, Sungsoo ;
Park, Mira ;
Lee, Hakbae .
COMPUTATIONAL STATISTICS, 2006, 21 (3-4) :589-601
[7]   EXACT MEAN INTEGRATED SQUARED ERROR [J].
MARRON, JS ;
WAND, MP .
ANNALS OF STATISTICS, 1992, 20 (02) :712-736
[8]   Multistage plug-in bandwidth selection for kernel distribution function estimates [J].
Polansky, AM ;
Baker, ER .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2000, 65 (01) :63-80
[9]  
Silverman B. W., 1986, Density estimation for statistics and data analysis, DOI 10.1201/9781315140919
[10]   A new kernel distribution function estimator based on a non-parametric transformation of the data [J].
Swanepoel, JWH ;
Van Graan, FC .
SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (04) :551-562