Luminance uniformity study of OLED lighting panels depending on OLED device structures

被引:15
作者
Bae, Hyeong Woo [1 ]
Son, Young Hoon [1 ]
Kang, Byoung Yeop [1 ]
Lee, Jung Min [1 ]
Nam, Hyoungsik [1 ]
Kwon, Jang Hyuk [1 ]
机构
[1] Kyung Hee Univ, Dept Informat Display, Seoul 130701, South Korea
来源
OPTICS EXPRESS | 2015年 / 23卷 / 24期
关键词
FIELD-SIMULATION; EMITTING DEVICES; WHITE OLEDS; DIODES;
D O I
10.1364/OE.23.030701
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper describes the luminance uniformity of OLED lighting panels depending on OLED device structures of single emission layer (single-EML), 2-tandem, and 3-tandem. The luminance distribution is evaluated through the circuit simulation and the fabricated panel measurement. In the simulation results with yellow-green color panels of 30 x 80 mm(2) emission area, a 3-tandem structure shows the lowest nonuniformity (1.34% at 7.5V), compared to single-EML (5.67% at 2.8V) and 2-tandem (2.78% at 5.3 V) structures at 1,000 cd/m(2). The luminance nonuniformity is germane to the OLED conductance showing that the high luminance-current efficiency is of the most importance to achieve the uniform voltage and luminance distribution. In measurement, a 3-tandem structure also achieves the most uniform luminance distribution with nonuniformity of 4.1% while single EML and 2-tandem structures accomplish 9.6%, and 6.4%, respectively, at similar to 1,000 cd/m(2). In addition, the simulation results ensure that a 3-tandem structure panel is allowed to be enlarged the panel size up to about 5,000 mm(2)Z for lower luminance non-uniformity than 10% without any auxiliary metal electrodes. (c) 2015 Optical Society of America
引用
收藏
页码:30701 / 30708
页数:8
相关论文
共 20 条
[1]   Thin film encapsulated flexible organic electroluminescent displays [J].
Chwang, AB ;
Rothman, MA ;
Mao, SY ;
Hewitt, RH ;
Weaver, MS ;
Silvernail, JA ;
Rajan, K ;
Hack, M ;
Brown, JJ ;
Chu, X ;
Moro, L ;
Krajewski, T ;
Rutherford, N .
APPLIED PHYSICS LETTERS, 2003, 83 (03) :413-415
[2]  
D'Andrade B.W., 2004, ADV MATER, V16, P18
[3]   Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode [J].
Duan, Lian ;
Liu, Song ;
Zhang, Deqing ;
Qiao, Juan ;
Dong, Guifang ;
Wang, Liduo ;
Qiu, Yong .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (07)
[4]   White Organic Light-Emitting Diodes [J].
Gather, Malte C. ;
Koehnen, Anne ;
Meerholz, Klaus .
ADVANCED MATERIALS, 2011, 23 (02) :233-248
[5]   Vacuum-deposited, nonpolymeric flexible organic light-emitting devices [J].
Gu, G ;
Burrows, PE ;
Venkatesh, S ;
Forrest, SR ;
Thompson, ME .
OPTICS LETTERS, 1997, 22 (03) :172-174
[6]   Transparent organic light emitting devices [J].
Gu, G ;
Bulovic, V ;
Burrows, PE ;
Forrest, SR ;
Thompson, ME .
APPLIED PHYSICS LETTERS, 1996, 68 (19) :2606-2608
[7]   Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications II: Luminosity and failure analysis [J].
Kohari, Zsolt ;
Kollar, Erno ;
Pohl, Laszlo ;
Poppe, Andras .
MICROELECTRONICS JOURNAL, 2013, 44 (11) :1011-1018
[8]   High-performance white OLEDs with high color-rendering index for next-generation solid-state lighting [J].
Komoda, Takuya ;
Ide, Nobuhiro ;
Varutt, Kittichungchit ;
Yamae, Kazuyuki ;
Tsuji, Hiroya ;
Matsuhisa, Yuko .
JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, 2011, 19 (11) :838-846
[9]   General Einstein relation model in disordered organic semiconductors under quasiequilibrium [J].
Li, Ling ;
Lu, Nianduan ;
Liu, Ming ;
Baessler, Heinz .
PHYSICAL REVIEW B, 2014, 90 (21)
[10]  
Ma R., 2011, SID S, V42, P983