The generalized partial transposition criterion for infinite-dimensional quantum systems

被引:3
作者
Yan, Siqing [1 ]
Guo, Yu [2 ]
Hou, Jinchuan [1 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Peoples R China
[2] Shanxi Datong Univ, Dept Math, Datong 037009, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2014年 / 59卷 / 03期
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金; 中国博士后科学基金;
关键词
Quantum state; Entanglement; Generalized partial transposition; Realignment; Infinite-dimensional Hilbert space; MULTIPARTICLE ENTANGLEMENT; CCNR CRITERION; STATES; SEPARABILITY;
D O I
10.1007/s11434-013-0022-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The positive partial transposition (PPT) criterion and the realignment criterion constitute two of the most important criteria for detecting entanglement. The generalized partial transposition (GPT) criterion which contains the PPT criterion and the realignment criterion as special cases, provides a necessary condition for a multipartite state to be separable. Here we extend the GPT criterion to the infinite-dimensional multipartite (bipartite) case and show that it includes multipartite (bipartite) PPT criterion and multipartite (bipartite) realignment criterion as special cases as well.
引用
收藏
页码:279 / 285
页数:7
相关论文
共 26 条
  • [1] Entanglement of linear cluster states in terms of averaged entropies
    Cao Ye
    Li Hui
    Long GuiLu
    [J]. CHINESE SCIENCE BULLETIN, 2013, 58 (01): : 48 - 52
  • [2] Chen K, 2003, QUANTUM INF COMPUT, V3, P193
  • [3] The generalized partial transposition criterion for separability of multipartite quantum states
    Chen, K
    Wu, LA
    [J]. PHYSICS LETTERS A, 2002, 306 (01) : 14 - 20
  • [4] Chuang I. N., 2000, Quantum Computation and Quantum Information
  • [5] Quantum correlations relativity for continuous variable systems
    Dugic, M.
    Arsenijevic, M.
    Jeknic-Dugic, J.
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2013, 56 (04) : 732 - 736
  • [6] Separability and distillability of multiparticle quantum systems
    Dür, W
    Cirac, JI
    Tarrach, R
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (17) : 3562 - 3565
  • [7] Entanglement detection
    Guehne, Otfried
    Toth, Geza
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 474 (1-6): : 1 - 75
  • [8] REALIGNMENT OPERATION AND CCNR CRITERION OF SEPARABILITY FOR STATES IN INFINITE-DIMENSIONAL QUANTUM SYSTEMS
    Guo, Yu
    Hou, Jinchuan
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (01) : 25 - 40
  • [9] Entanglement detection beyond the CCNR criterion for infinite-dimensions
    Guo Yu
    Hou JinChuan
    [J]. CHINESE SCIENCE BULLETIN, 2013, 58 (11): : 1250 - 1255
  • [10] Horodecki P, 2001, QUANTUM INF COMPUT, V1, P45