In-hospital Mortality Prediction for ICU Patients on Large Healthcare MIMIC Datasets Using Class Imbalance Learning

被引:0
作者
Li, Lijuan [1 ]
Liu, Guangjian [1 ]
机构
[1] Guangzhou Med Univ, Guangzhou Women & Childrens Med Ctr, Guangzhou 510623, Peoples R China
来源
2020 5TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (IEEE ICBDA 2020) | 2020年
关键词
mortality prediction; MIMIC datasets; class imbalance learning; SAPS-3; MODEL; UNIT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of class imbalance in the in-hospital mortality prediction for ICU patients is presented. We propose to build a novel predicting model using the balanced random forest (BRF) algorithm, and tune the hyper parameters using a better performance measure, i.e., adjusted geometric-mean. The performance of the model is evaluated using the data derived from the publicly available Medical Information Mart for Intensive Care (MIMIC-III) database. Our results show that the recall rate of the death class of ICU patients was significantly improved compared with the benchmarking model.
引用
收藏
页码:90 / 93
页数:4
相关论文
共 19 条
[1]   A New Performance Measure for Class Imbalance Learning. Application to Bioinformatics Problems [J].
Batuwita, Rukshan ;
Palade, Vasile .
EIGHTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2009, :545-550
[2]  
Chen C., 2004, USING RANDOM FOREST
[3]   Learning from class-imbalanced data: Review of methods and applications [J].
Guo Haixiang ;
Li Yijing ;
Shang, Jennifer ;
Gu Mingyun ;
Huang Yuanyue ;
Bing, Gong .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 73 :220-239
[4]   Multitask learning and benchmarking with clinical time series data [J].
Harutyunyan, Hrayr ;
Khachatrian, Hrant ;
Kale, David C. ;
Ver Steeg, Greg ;
Galstyan, Aram .
SCIENTIFIC DATA, 2019, 6 (1)
[5]  
He H, 2013, IMBALANCED LEARNING: FOUNDATIONS, ALGORITHMS, AND APPLICATIONS, P1, DOI 10.1002/9781118646106
[6]   Updated Mortality Probability Model (MPM-III) [J].
Higgins, TL ;
Teres, D ;
Copes, W ;
Nathanson, B ;
Stark, L ;
Kramer, A .
CHEST, 2005, 128 (04) :348S-348S
[7]   MIMIC-III, a freely accessible critical care database [J].
Johnson, Alistair E. W. ;
Pollard, Tom J. ;
Shen, Lu ;
Lehman, Li-wei H. ;
Feng, Mengling ;
Ghassemi, Mohammad ;
Moody, Benjamin ;
Szolovits, Peter ;
Celi, Leo Anthony ;
Mark, Roger G. .
SCIENTIFIC DATA, 2016, 3
[8]   Machine Learning and Decision Support in Critical Care [J].
Johnson, Alistair E. W. ;
Ghassemi, Mohammad M. ;
Nemati, Shamim ;
Niehaus, Katherine E. ;
Clifton, David A. ;
Clifford, Gari D. .
PROCEEDINGS OF THE IEEE, 2016, 104 (02) :444-466
[9]  
Lemaître G, 2017, J MACH LEARN RES, V18
[10]   SAPS 3 - From evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description [J].
Metnitz, PGH ;
Moreno, RP ;
Almeida, E ;
Jordan, B ;
Bauer, P ;
Campos, RA ;
Iapichino, G ;
Edbrooke, D ;
Capuzzo, M ;
Le Gall, JR .
INTENSIVE CARE MEDICINE, 2005, 31 (10) :1336-1344