Semi-conformal polynomials and harmonic morphisms

被引:0
|
作者
Ababou, R
Baird, P
Brossard, J
机构
[1] Univ Bretagne Occidentale, Dept Math, F-29275 Brest, France
[2] Inst Fourier, F-38402 St Martin Dheres, France
关键词
D O I
10.1007/PL00004744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Liouville type theorem for harmonic morphisms from R-m to R-n (n greater than or equal to 3), showing that any such mapping which is defined off a polar set must be polynomial. We show that any semi-conformal mapping from R-m to R-n defined by polynomials is necessarily harmonic. This result has consequences for the local behaviour of a semi-conformal mapping between arbitrary Riemannian manifolds about a singular point.
引用
收藏
页码:589 / 604
页数:16
相关论文
共 50 条