Semi-conformal polynomials and harmonic morphisms

被引:0
|
作者
Ababou, R
Baird, P
Brossard, J
机构
[1] Univ Bretagne Occidentale, Dept Math, F-29275 Brest, France
[2] Inst Fourier, F-38402 St Martin Dheres, France
关键词
D O I
10.1007/PL00004744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Liouville type theorem for harmonic morphisms from R-m to R-n (n greater than or equal to 3), showing that any such mapping which is defined off a polar set must be polynomial. We show that any semi-conformal mapping from R-m to R-n defined by polynomials is necessarily harmonic. This result has consequences for the local behaviour of a semi-conformal mapping between arbitrary Riemannian manifolds about a singular point.
引用
收藏
页码:589 / 604
页数:16
相关论文
共 50 条
  • [31] ON A CLASS OF CONFORMAL MORPHISMS
    FERRAND, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (15): : 681 - 684
  • [32] Harmonic maps and harmonic morphisms
    J. C. Wood
    Journal of Mathematical Sciences, 1999, 94 (2) : 1263 - 1269
  • [33] HARMONIC MORPHISMS AND CONFORMAL FOLIATIONS BY GEODESICS OF 3-DIMENSIONAL SPACE-FORMS
    BAIRD, P
    WOOD, JC
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 51 : 118 - 153
  • [34] MULTIVALUED HARMONIC MORPHISMS
    GUDMUNDSSON, S
    WOOD, JC
    MATHEMATICA SCANDINAVICA, 1993, 73 (01) : 127 - 155
  • [35] On holomorphic harmonic morphisms
    Svensson, MT
    MANUSCRIPTA MATHEMATICA, 2002, 107 (01) : 1 - 13
  • [36] Pseudo harmonic morphisms
    Loubeau, E
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (07) : 943 - 957
  • [37] SUBELLIPTIC HARMONIC MORPHISMS
    Dragomir, Sorin
    Lanconelli, Ermanno
    OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (02) : 411 - 440
  • [38] On holomorphic harmonic morphisms
    Martin Svensson
    manuscripta mathematica, 2002, 107 : 1 - 13
  • [39] On submersive harmonic morphisms
    Pantilie, R
    HARMONIC MORPHISMS, HARMONIC MAPS, AND RELATED TOPICS, 2000, 413 : 23 - 29
  • [40] On the stability of harmonic morphisms
    Montaldo, S
    HARMONIC MORPHISMS, HARMONIC MAPS, AND RELATED TOPICS, 2000, 413 : 31 - 38