On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies

被引:92
作者
Petersen, Ann-Kristin [1 ]
Krumsiek, Jan [2 ]
Waegele, Brigitte [2 ,3 ]
Theis, Fabian J. [2 ]
Wichmann, H-Erich [4 ,5 ,6 ]
Gieger, Christian [1 ]
Suhre, Karsten [2 ,7 ,8 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Genet Epidemiol, Neuherberg, Germany
[2] Helmholtz Zentrum Munchen, Inst Bioinformat & Syst Biol, Neuherberg, Germany
[3] Tech Univ Munich, Life & Food Sci Ctr Weihenstephan, Dept Genome Oriented Bioinformat, Freising Weihenstephan, Germany
[4] Helmholtz Zentrum Munchen, Inst Epidemiol 1, Neuherberg, Germany
[5] Univ Munich, Chair Epidemiol, Inst Med Informat Biometry & Epidemiol, Munich, Germany
[6] Univ Munich, Klinikum Grosshadern, D-80539 Munich, Germany
[7] Univ Munich, Fac Biol, Planegg Martinsried, Germany
[8] Educ City Qatar Fdn, Weill Cornell Med Coll Qatar, Dept Physiol & Biophys, Doha, Qatar
来源
BMC BIOINFORMATICS | 2012年 / 13卷
关键词
p-gain; Metabolomics; MWAS; GWAS; Genome-wide association studies; Metabolome-wide association studies; IDENTIFICATION; SPECTRUM;
D O I
10.1186/1471-2105-13-120
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Genome-wide association studies (GWAS) with metabolic traits and metabolome-wide association studies (MWAS) with traits of biomedical relevance are powerful tools to identify the contribution of genetic, environmental and lifestyle factors to the etiology of complex diseases. Hypothesis-free testing of ratios between all possible metabolite pairs in GWAS and MWAS has proven to be an innovative approach in the discovery of new biologically meaningful associations. The p-gain statistic was introduced as an ad-hoc measure to determine whether a ratio between two metabolite concentrations carries more information than the two corresponding metabolite concentrations alone. So far, only a rule of thumb was applied to determine the significance of the p-gain. Results: Here we explore the statistical properties of the p-gain through simulation of its density and by sampling of experimental data. We derive critical values of the p-gain for different levels of correlation between metabolite pairs and show that B/(2*alpha) is a conservative critical value for the p-gain, where a is the level of significance and B the number of tested metabolite pairs. Conclusions: We show that the p-gain is a well defined measure that can be used to identify statistically significant metabolite ratios in association studies and provide a conservative significance cut-off for the p-gain for use in future association studies with metabolic traits.
引用
收藏
页数:7
相关论文
共 21 条
  • [1] Bioinformatics analysis of targeted metabolomics - Uncovering old and new tales of diabetic mice under medication
    Altmaier, Elisabeth
    Ramsay, Steven L.
    Graber, Armin
    Mewes, Hans-Werner
    Weinberger, Klaus M.
    Suhre, Karsten
    [J]. ENDOCRINOLOGY, 2008, 149 (07) : 3478 - 3489
  • [2] Questionnaire-based self-reported nutrition habits associate with serum metabolism as revealed by quantitative targeted metabolomics
    Altmaier, Elisabeth
    Kastenmueller, Gabi
    Roemisch-Margl, Werner
    Thorand, Barbara
    Weinberger, Klaus M.
    Illig, Thomas
    Adamski, Jerzy
    Doering, Angela
    Suhre, Karsten
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2011, 26 (02) : 145 - 156
  • [3] [Anonymous], 2010, LANG ENV STAT COMP
  • [4] Integrated, Nontargeted Ultrahigh Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry Platform for the Identification and Relative Quantification of the Small-Molecule Complement of Biological Systems
    Evans, Anne M.
    DeHaven, Corey D.
    Barrett, Tom
    Mitchell, Matt
    Milgram, Eric
    [J]. ANALYTICAL CHEMISTRY, 2009, 81 (16) : 6656 - 6667
  • [5] Genetics Meets Metabolomics: A Genome-Wide Association Study of Metabolite Profiles in Human Serum
    Gieger, Christian
    Geistlinger, Ludwig
    Altmaier, Elisabeth
    de Angelis, Martin Hrabe
    Kronenberg, Florian
    Meitinger, Thomas
    Mewes, Hans-Werner
    Wichmann, H. -Erich
    Weinberger, Klaus M.
    Adamski, Jerzy
    Illig, Thomas
    Suhre, Karsten
    [J]. PLOS GENETICS, 2008, 4 (11)
  • [6] Mass spectrometry-based technologies for high-throughput metabolomics
    Han, Jun
    Datla, Raju
    Chan, Sammy
    Borchers, Christoph H.
    [J]. BIOANALYSIS, 2009, 1 (09) : 1665 - 1684
  • [7] PHENYLKETONURIA - THE PHENYLALANINE-TYROSINE RATIO IN THE DETECTION OF THE HETEROZYGOUS CARRIER
    HSIA, DY
    [J]. JOURNAL OF MENTAL DEFICIENCY RESEARCH, 1958, 2 (01): : 8 - 16
  • [8] A genome-wide perspective of genetic variation in human metabolism
    Illig, Thomas
    Gieger, Christian
    Zhai, Guangju
    Roemisch-Margl, Werner
    Wang-Sattler, Rui
    Prehn, Cornelia
    Altmaier, Elisabeth
    Kastenmueller, Gabi
    Kato, Bernet S.
    Mewes, Hans-Werner
    Meitinger, Thomas
    de Angelis, Martin Hrabe
    Kronenberg, Florian
    Soranzo, Nicole
    Wichmann, H-Erich
    Spector, Tim D.
    Adamski, Jerzy
    Suhre, Karsten
    [J]. NATURE GENETICS, 2010, 42 (02) : 137 - U66
  • [9] Challenges in Mass Spectrometry Based Targeted Metabolomics
    Koal, T.
    Deigner, H. -P.
    [J]. CURRENT MOLECULAR MEDICINE, 2010, 10 (02) : 216 - 226
  • [10] Kojadinovic I, 2010, J STAT SOFTW, V34