Complex-order forced van der Pol oscillator

被引:27
作者
Pinto, Carla M. A. [1 ,2 ]
Tenreiro Machado, J. A. [3 ]
机构
[1] Univ Porto, Ctr Matemat, P-4200072 Oporto, Portugal
[2] Inst Engn Porto, Dept Math, P-4200072 Oporto, Portugal
[3] Inst Engn Porto, Dept Elect Engn, P-4200072 Oporto, Portugal
关键词
Complex-order derivative; dynamical behavior; forced van der Pol oscillator; FRACTIONAL-ORDER; RELAXATION OSCILLATIONS; DIFFERENTIAL-EQUATIONS; GENERALIZED VAN; LIMIT-CYCLES; SYSTEM; MODEL; CHAOS; BIFURCATIONS; ENTRAINMENT;
D O I
10.1177/1077546311429150
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper we consider a complex-order forced van der Pol oscillator. The complex derivative D-alpha +/- J beta, with alpha, beta is an element of R+, is a generalization of the concept of an integer derivative, where alpha = 1, beta = 0. The Fourier transforms of the periodic solutions of the complex-order forced van der Pol oscillator are computed for various values of parameters such as frequency omega and amplitude b of the external forcing, the damping mu, and parameters alpha and beta. Moreover, we consider two cases: (i) b = 1, mu = {1.0, 5.0, 10.0}, and omega = {0.5, 2.46, 5.0, 20.0}; (ii) omega = 20.0, mu = {1.0, 5.0, 10.0}, and b = {1.0, 5.0, 10.0}. We verified that most of the signal energy is concentrated in the fundamental harmonic omega(0). We also observed that the fundamental frequency of the oscillations omega(0) varies with alpha and mu. For the range of tested values, the numerical fitting led to logarithmic approximations for system (7) in the two cases (i) and (ii). In conclusion, we verify that by varying the parameter values alpha and beta of the complex-order derivative in expression (7), we accomplished a very effective way of perturbing the dynamical behavior of the forced van der Pol oscillator, which is no longer limited to parameters b and omega.
引用
收藏
页码:2201 / 2209
页数:9
相关论文
共 49 条
[1]   On fractional order differential equations model for nonlocal epidemics [J].
Ahmed, E. ;
Elgazzar, A. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :607-614
[2]   Acoustic and seismic signals of heavy military vehicles for co-operative verification [J].
Altmann, J .
JOURNAL OF SOUND AND VIBRATION, 2004, 273 (4-5) :713-740
[3]  
[Anonymous], 1928, REV GENERALE LELECTR, DOI DOI 10.1016/J.JWEIA.2013.09.002
[4]  
[Anonymous], P ASME INT DES ENG T
[5]   Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis [J].
Appelbe, B. ;
Rachinskii, D. ;
Zhezherun, A. .
PHYSICA B-CONDENSED MATTER, 2008, 403 (2-3) :301-304
[6]   Analysis of a fractional order Van der Pol-like oscillator via describing function method [J].
Attari, Mina ;
Haeri, Mohammad ;
Tavazoei, Mohammad Saleh .
NONLINEAR DYNAMICS, 2010, 61 (1-2) :265-274
[7]   About fractional quantization and fractional variational principles [J].
Baleanu, Dumitru .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (06) :2520-2523
[8]   Analysis of the van der pol oscillator containing derivatives of fractional order [J].
Barbosa, Ramiro S. ;
Machado, J. A. Tenreiro ;
Vinagre, B. M. ;
Calderon, A. J. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1291-1301
[9]   The forced van der Pol equation II: Canards in the reduced system [J].
Bold, K ;
Edwards, C ;
Guckenheimer, J ;
Guharay, S ;
Hoffman, K ;
Hubbard, J ;
Oliva, R ;
Weckesser, W .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2003, 2 (04) :570-608
[10]   NEW DISSIPATION MODEL BASED ON MEMORY MECHANISM [J].
CAPUTO, M ;
MAINARDI, F .
PURE AND APPLIED GEOPHYSICS, 1971, 91 (08) :134-&