Refined lower bounds on the 2-class number of the Hilbert 2-class field of imaginary quadratic number fields with elementary 2-class group of rank 3

被引:2
作者
Benjamin, E [1 ]
Parry, CJ [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
关键词
D O I
10.1006/jnth.1998.2361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an imaginary quadratic number field with C-k,C- 2, the 2-Sylow subgroup of its ideal class group, isomorphic to Z/2Z x Z/2Z x Z/2Z. By the use of various versions of the Kuroda das number formula, we improve significantly upon our previous lower bound for \Ck(1), 2\ the 2-class number of the Hilbert 2-class field of k. (C) 1999 Academic Press.
引用
收藏
页码:167 / 177
页数:11
相关论文
共 21 条
[1]  
Benjamin E, 1996, HOUSTON J MATH, V22, P11
[2]   Real quadratic fields with abelian 2-class field tower [J].
Benjamin, E ;
Lemmermeyer, F ;
Snyder, C .
JOURNAL OF NUMBER THEORY, 1998, 73 (02) :182-194
[3]   CAPITULATION IN UNRAMIFIED QUADRATIC EXTENSIONS OF REAL QUADRATIC NUMBER-FIELDS [J].
BENJAMIN, E ;
SANBORN, F ;
SNYDER, C .
GLASGOW MATHEMATICAL JOURNAL, 1994, 36 :385-392
[4]  
BENJAMIN E, 1996, THESIS U MAINE
[5]   CLASS NUMBERS OF REAL QUADRATIC NUMBER FIELDS [J].
BROWN, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 190 (463) :99-107
[6]  
BUELL DA, 1969, BINARY QUADRATIC FOR
[7]  
COHN A, 1971, COMPUTERS NUMBERS TH
[8]  
COUTURE R, 1992, CR ACAD SCI I-MATH, V314, P785
[9]  
Iwasawa K., 1956, J. Math. Pures Appl., V35, P189
[10]  
Janusz G., 1973, Algebraic Number Fields