MT-CGP: Mixed Type Cartesian Genetic Programming

被引:20
作者
Harding, Simon [1 ]
Graziano, Vincent [1 ]
Leitner, Juergen [1 ]
Schmidhuber, Juergen [1 ]
机构
[1] IDSIA SUPSI USI, CH-6928 Manno, Switzerland
来源
PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE | 2012年
关键词
Cartesian Genetic Programming; Classifiers; NEURAL NETWORKS;
D O I
10.1145/2330163.2330268
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The majority of genetic programming implementations build expressions that only use a single data type. This is in contrast to human engineered programs that typically make use of multiple data types, as this provides the ability to express solutions in a more natural fashion. In this paper, we present a version of Cartesian Genetic Programming that handles multiple data types. We demonstrate that this allows evolution to quickly find competitive, compact, and human readable solutions on multiple classification tasks.
引用
收藏
页码:751 / 758
页数:8
相关论文
共 30 条
[1]   An evolutionary artificial neural networks approach for breast cancer diagnosis [J].
Abbass, HA .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2002, 25 (03) :265-281
[2]  
[Anonymous], MATTH CORR COEFF WIK
[3]  
[Anonymous], NATURAL COMPUTING SE
[4]  
[Anonymous], NEUR NETW 2008 IJCNN
[5]  
[Anonymous], TECHNICAL REPORT
[6]  
Binard Franck, 2008, P 10 ANN C GEN EV CO, P1187
[7]   A comparison of linear genetic programming and neural networks in medical data mining [J].
Brameier, M ;
Banzhaf, W .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2001, 5 (01) :17-26
[8]  
Chang KY, 1998, IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, P695, DOI 10.1109/IJCNN.1998.682365
[9]  
Clack C., 1997, Evolutionary Programming VI. 6th International Conference, EP97. Proceedings, P87
[10]   Incremental Local Linear Fuzzy Classifier in Fisher Space [J].
Eftekhari, Armin ;
Moghaddam, Hamid Abrishami ;
Forouzanfar, Mohamad ;
Alirezaie, Javad .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2009,