GaN-On-Diamond HEMT Technology With TAVG=176 °C at PDC, max=56 W/mm Measured by Transient Thermoreflectance Imaging

被引:68
作者
Tadjer, Marko J. [1 ]
Anderson, Travis J. [1 ]
Ancona, Mario G. [1 ]
Raad, Peter E. [2 ,3 ]
Komarov, Pavel [3 ]
Bai, Tingyu [4 ]
Gallagher, James C. [1 ]
Koehler, Andrew D. [1 ]
Goorsky, Mark S. [4 ]
Francis, Daniel A. [5 ]
Hobart, Karl D. [1 ]
Kub, Fritz J. [1 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
[2] Southern Methodist Univ, Dept Mech Engn, Dallas, TX 75205 USA
[3] TMX Sci Inc, Richardson, TX 75081 USA
[4] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[5] Akash Syst Inc, San Francisco, CA 94108 USA
关键词
GaN; diamond; thermoreflectance; thermal management; transmission electron microscopy; THERMAL-CONDUCTIVITY; TEMPERATURE; FILMS;
D O I
10.1109/LED.2019.2909289
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Record DC power has been demonstrated in AlGaN/GaN high electron mobility transistors fabricated using a substrate replacement process in which a thick diamond substrate is grown by chemical vapor deposition following removal of the original Si substrate. Crucial to the process is a similar to 30 nm thick SiN interlayer that has been optimized for thermal resistance. The reductions obtained in self-heating have been quantified by transient thermoreflectance imaging and interpreted using 3D numerical simulation. With a DC power dissipation level of 56 W/mm, the measured average and maximum temperatures in the gate-drain access region were 176 degrees C and 205 degrees C, respectively.
引用
收藏
页码:881 / 884
页数:4
相关论文
共 28 条
[1]   AlGaN/GaN heterostructure field-effect transistor model including thermal effects [J].
Albrecht, JD ;
Ruden, PP ;
Binari, SC ;
Ancona, MG .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (11) :2031-2036
[2]   Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties [J].
Anaya, Julian ;
Rossi, Stefano ;
Alomari, Mohammed ;
Kohn, Erhard ;
Toth, Lajos ;
Pecz, Bela ;
Hobart, Karl D. ;
Anderson, Travis J. ;
Feygelson, Tatyana I. ;
Pate, Bradford B. ;
Kuball, Martin .
ACTA MATERIALIA, 2016, 103 :141-152
[3]   Fully coupled thermoelectromechanical analysis of GaN high electron mobility transistor degradation [J].
Ancona, M. G. ;
Binari, S. C. ;
Meyer, D. J. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
[4]   Noncontact transient temperature mapping of active electronic devices using the thermoreflectance method [J].
Burzo, MG ;
Komarov, PL ;
Raad, PE .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2005, 28 (04) :637-643
[5]   Full-Wafer Characterization of AlGaN/GaN HEMTs on Free-Standing CVD Diamond Substrates [J].
Chabak, Kelson D. ;
Gillespie, James K. ;
Miller, Virginia ;
Crespo, Antonio ;
Roussos, Jason ;
Trejo, Manuel ;
Walker, Dennis E., Jr. ;
Via, Glen D. ;
Jessen, Gregg H. ;
Wasserbauer, John ;
Faili, Firooz ;
Babic, Dubravko I. ;
Francis, Daniel ;
Ejeckam, Felix .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (02) :99-101
[6]   AlGaN/GaN HEMTs on diamond substrate with over 7W/mm output power density at 10 GHz [J].
Dumka, D. C. ;
Chou, T. M. ;
Faili, F. ;
Francis, D. ;
Ejeckam, F. .
ELECTRONICS LETTERS, 2013, 49 (20) :1298-U88
[7]  
Dumka D.C., 2013, IEEE 2013, Compound Semiconductor Integrated Circuit Symposium (CSICS), P1, DOI DOI 10.1109/CSICS.2013.6659225
[8]   GaN-on-Diamond: A Brief History [J].
Ejeckam, Felix ;
Francis, Daniel ;
Faili, Firooz ;
Twitchen, Daniel ;
Bolliger, Bruce ;
Babic, Dubravko ;
Felbinger, Jonathan .
2014 LESTER EASTMAN CONFERENCE ON HIGH PERFORMANCE DEVICES (LEC), 2014,
[9]   Comparison of GaNHEMTs on diamond and SiC substrates [J].
Felbinger, Jonathan G. ;
Chandra, M. V. S. ;
Sun, Yunju ;
Eastman, Lester F. ;
Wasserbauer, John ;
Faili, Firooz ;
Babic, Dubravko ;
Francis, Daniel ;
Ejeckam, Felix .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (11) :948-950
[10]   ANISOTROPIC THERMAL-CONDUCTIVITY IN CHEMICAL VAPOR-DEPOSITION DIAMOND [J].
GRAEBNER, JE ;
JIN, S ;
KAMMLOTT, GW ;
BACON, B ;
SEIBLES, L ;
BANHOLZER, W .
JOURNAL OF APPLIED PHYSICS, 1992, 71 (11) :5353-5356