Positive integer powers of certain complex tridiagonal matrices

被引:11
作者
Oteles, Ahmet [1 ]
Akbulak, Mehmet [2 ]
机构
[1] Dicle Univ, Fac Educ, Dept Math, TR-21280 Diyarbakir, Turkey
[2] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkey
关键词
Tridiagonal matrices; Eigenvalues; Eigenvectors; Jordan's form; Chebyshev polynomials; Fibonacci sequence; Pell sequence; SYMMETRIC CIRCULANT MATRICES; FACTORIZATIONS; REPRESENTATIONS; EIGENVALUES; RECURRENCES;
D O I
10.1016/j.amc.2013.04.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we firstly present a general expression for the entries of the rth (r is an element of N) power of a certain n-square complex tridiagonal matrix, in terms of the Chebyshev polynomials of the first kind. Secondly, we obtain a complex factorization formula for generalized Fibonacci-Pell numbers obeying also classical Fibonacci and Pell numbers. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:10448 / 10455
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 2010, The on-line encyclopedia of integer sequences
[2]  
Cahill ND, 2003, FIBONACCI QUART, V41, P13
[3]   On the eigenvalues of some tridiagonal matrices [J].
da Fonseca, C. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) :283-286
[4]  
Gutiérrez-Gutiérrez J, 2008, APPL MATH COMPUT, V202, P877, DOI 10.1016/j.amc.2008.02.010
[5]   Positive integer powers of complex skew-symmetric circulant matrices [J].
Gutierrez-Gutierrez, Jesus .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :798-802
[6]   Positive integer powers of certain tridiagonal matrices [J].
Gutierrez-Gutierrez, Jesus .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) :133-140
[7]   Powers of real persymmetric anti-tridiagonal matrices with constant anti-diagonals [J].
Gutierrez-Gutierrez, Jesus .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (02) :919-924
[8]   Powers of tridiagonal matrices with constant diagonals [J].
Gutierrez-Gutierrez, Jesus .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (02) :885-891
[9]   Factorizations and representations of the backward second-order linear recurrences [J].
Kilic, Emrah ;
Tasci, Dursun .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 201 (01) :182-197
[10]   FACTORIZATIONS AND REPRESENTATIONS OF BINARY POLYNOMIAL RECURRENCES BY MATRIX METHODS [J].
Kilic, Emrah ;
Stanica, Pantelimon .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (04) :1247-1264