Numerical analysis of the rescaling method for parabolic problems with blow-up in finite time

被引:8
|
作者
Nguyen, V. T. [1 ,2 ]
机构
[1] Univ Paris 13, Sorbonne Paris Cite, LAGA, CNRS,UMR 7539, F-93430 Villetaneuse, France
[2] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates
关键词
Numerical blow-up; Finite-time blow-up; Nonlinear parabolic equations; NONLINEAR HEAT-EQUATIONS; APPROXIMATION; BEHAVIOR; PROFILE; NONEXISTENCE; DIFFERENCE; STABILITY; THEOREMS;
D O I
10.1016/j.physd.2016.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the numerical solution for parabolic equations whose solutions have a common property of blowing up in finite time and the equations are invariant under the following scaling transformation u -> u(lambda) (x,t) := lambda(2/p-1) u(lambda x, lambda(2)t). For that purpose, we apply the rescaling method proposed by Berger and Kohn (1988) to such problems. The convergence of the method is proved under some regularity assumption. Some numerical experiments are given to derive the blow-up profile verifying henceforth the theoretical results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 65
页数:17
相关论文
共 50 条
  • [1] NUMERICAL BLOW-UP TIME FOR NONLINEAR PARABOLIC PROBLEMS
    Achille, Adou Koffi
    Fatou, N. Diop
    Koffi, N' Guessan
    Augustin, Toure Kidjegbo
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2022, 28 : 135 - 152
  • [2] On the convergence of the numerical blow-up time for a rescaling algorithm
    Cho, Chien-Hong
    Wu, Jhih-Sin
    NUMERICAL ALGORITHMS, 2025, 98 (01) : 191 - 217
  • [3] Bounds for blow-up time in nonlinear parabolic problems
    Payne, L. E.
    Philippin, G. A.
    Schaefer, P. W.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) : 438 - 447
  • [4] Finite Time Blow-up of Parabolic Systems with Nonlocal Terms
    Li, Fang
    Yip, Nung Kwan
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (03) : 783 - 829
  • [5] Finite time blow-up for a class of parabolic or pseudo-parabolic equations
    Sun, Fenglong
    Liu, Lishan
    Wu, Yonghong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (10) : 3685 - 3701
  • [6] An adaptive numerical method to handle blow-up in a parabolic system
    Brandle, C
    Quirós, F
    Rossi, JD
    NUMERISCHE MATHEMATIK, 2005, 102 (01) : 39 - 59
  • [7] An adaptive numerical method to handle blow-up in a parabolic system
    Cristina Brändle
    Fernando Quirós
    Julio D. Rossi
    Numerische Mathematik, 2005, 102 : 39 - 59
  • [8] Numerical finite difference approximations of a coupled parabolic system with blow-up
    Khalil, Manar I.
    Hashim, Ishak
    Rasheed, Maan A.
    Ismail, Eddie S.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 32 (04): : 387 - 407
  • [9] BLOW-UP PROBLEMS FOR NONLINEAR PARABOLIC EQUATIONS ON LOCALLY FINITE GRAPHS
    Lin, Yong
    Wu, Yiting
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (03) : 843 - 856
  • [10] On the numerical solutions for a parabolic system with blow-up
    Cho, Chien-Hong
    Lu, Ying-Jung
    AIMS MATHEMATICS, 2021, 6 (11): : 11749 - 11777