Sentiment Classification Based on AS-LDA Model

被引:23
作者
Liang, Jiguang [1 ]
Liu, Ping
Tan, Jianlong
Bai, Shuo
机构
[1] Chinese Acad Sci, Inst Informat Engn, Natl Engn Lab Informat Secur Technol, Beijing 100190, Peoples R China
来源
2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, ITQM 2014 | 2014年 / 31卷
关键词
sentiment analysis; sentiment classification; Latent Dirichlet Allocation; subjective document;
D O I
10.1016/j.procs.2014.05.296
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We address the task of sentiment classification - identification of the polarity of the subjective document in this paper. We introduces a sentiment classification method called AS_LDA. In this model, we assume that words in subjective documents consists of two parts: sentiment element words and auxiliary words which are sampled accordingly from sentiment topics and auxiliary topics. Sentiment element words include targets of the opinions, polarity words and modifiers of polarity words. Experimental results demonstrate that our approach outperforms Latent Dirichlet Allocation (LDA). (C) 2014 Published by Elsevier B.V. Open access under CC BY-NC-ND license.
引用
收藏
页码:511 / 516
页数:6
相关论文
共 17 条
[1]  
[Anonymous], 2011, 49 ANN M ASS COMP LI
[2]  
[Anonymous], 2010, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, DOI DOI 10.1145/1871437.1871741
[3]  
[Anonymous], 2009, P JOINT C 47 ANN M A
[4]  
Diakopoulos NA, 2010, CHI2010: PROCEEDINGS OF THE 28TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1-4, P1195
[5]  
Glorot X., 2011, INT C MACH LEARN, P513
[6]  
Go A., 2009, CS224N project report, Stanford, V1, P2
[7]  
Jo Y., 2011, P 4 ACM INT C WEB SE, P815, DOI [DOI 10.1145/1935826.1935932, https://doi.org/10.1145/1935826.1935932]
[8]  
Kucuktunc O., 2012, Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, P633, DOI DOI 10.1145/2124295.2124371
[9]  
Lin C., 2009, P 18 ACM C INF KNOWL, P375, DOI [10.1145/1645953.1646003, DOI 10.1145/1645953.1646003]
[10]  
Maas Andrew, 2011, P 49 ANN M ASS COMP, P142