Finite Element Simulation of Hot Nanoindentation in Vacuum

被引:20
|
作者
Lee, H. [1 ]
Chen, Y. [1 ,2 ]
Claisse, A. [1 ]
Schuh, C. A. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
基金
新加坡国家研究基金会;
关键词
FEM; High temperature nanoindentation; Thermal drift; Nanomechanical properties measurement; HIGH-TEMPERATURE NANOINDENTATION; INCIPIENT PLASTICITY; YOUNGS MODULUS; THIN-FILMS; INDENTATION; DEPENDENCE; HARDNESS; SIZE; NANO; TRANSFORMATION;
D O I
10.1007/s11340-012-9700-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A finite element model is developed to investigate technical issues associated with hot nanoindentation measurements in vacuum, e.g. thermal expansion-induced drift and temperature variations at the contact region between the cold indenter tip and hot specimen. With heat conduction properly accounted for, the model is able to reasonably reproduce experimental indentation measurements on fused silica and copper-two materials with significantly different thermal and mechanical properties-at several temperatures. Temperature and loading rate effects on thermal drift are established using this model and an analytical expression for predicting thermal drift is numerically calibrated. The model also captures details of the indentation process that are not directly accessible experimentally, and reaffirms the need for operational refinements in order to acquire high temperature indentation data of high quality, especially in a vacuum environment. Such information can guide experiments aimed at understanding thermally-activated phenomena in materials.
引用
收藏
页码:1201 / 1211
页数:11
相关论文
共 50 条
  • [1] Finite element simulation of hot nanoindentation in vacuum
    Lee, H.
    Chen, Y.
    Claisse, A.
    Schuh, C.A.
    Proceedings of the Society for Experimental Mechanics, Inc., 2013, 53 (06): : 1201 - 1211
  • [2] Finite Element Simulation of Hot Nanoindentation in Vacuum
    H. Lee
    Y. Chen
    A. Claisse
    C.A. Schuh
    Experimental Mechanics, 2013, 53 : 1201 - 1211
  • [3] Finite Element Simulation of Nanoindentation Process
    Iankov, Roumen
    Datcheva, Maria
    Cherneva, Sabina
    Stoychev, Dimiter
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, NAA 2012, 2013, 8236 : 319 - 326
  • [4] Finite Element Simulation of Vacuum Hot Bulge Forming of Titanium Alloy Cylindrical Workpiece
    Wang Ming-wei
    Wang Chun-yan
    Zhang Li-wen
    ADVANCED MATERIAL SCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2011, 675-677 : 921 - +
  • [5] Simulation of nanoindentation via interatomic potential finite element method
    Zhu, T
    Li, J
    Van Vliet, KJ
    Yip, S
    Suresh, S
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 795 - 799
  • [6] Finite element simulation of vacuum arc remelting
    Gartling, DK
    Sackinger, PA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 24 (12) : 1271 - 1289
  • [7] Finite element simulation of vacuum arc remelting
    Eng Sciences Ctr, Sandia National Lab, MS 08276, PO Box 5800, Albuquerque NM 87185-0827, United States
    Int J Numer Methods Fluids, 12 (1271-1289):
  • [8] Modeling of porosity in hydroxyapatite for finite element simulation of nanoindentation test
    Naderi, Sadjad
    Dabbagh, Ali
    Hassan, Mohsen Abdelnaeim
    Razak, Bushroa Abdul
    Abdullah, Hadijah
    Abu Kasim, Noor Hayaty
    CERAMICS INTERNATIONAL, 2016, 42 (06) : 7543 - 7550
  • [9] Mechanical characterization of PMMA by AFM nanoindentation and finite element simulation
    Zheng, L.
    Jiang, X.
    Deng, X. H.
    Yin, J. R.
    Jiang, Y.
    Zhang, P.
    Ding, Y. H.
    MATERIALS RESEARCH EXPRESS, 2016, 3 (11):
  • [10] Plastic characterization of metals by combining nanoindentation test and finite element simulation
    Ma, Yong
    Zhang, Ying
    Yu, Hai-feng
    Zhang, Xiang-yu
    Shu, Xue-feng
    Tang, Bin
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2013, 23 (08) : 2368 - 2373