Transient Stability Simulation by Explicit and Symplectic Runge-Kutta-Nystrom Method

被引:0
作者
Wang Fangzong [1 ]
He Yifan [1 ]
Ye Jing [1 ]
机构
[1] China Three Gorges Univ, Elect Engn & Renewable Energy Sch, Yichang 443002, Hubei Province, Peoples R China
来源
MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8 | 2012年 / 383-390卷
关键词
Transient stability; Differential algebraic equations; Symplectic geometry algorithm; Multifrontal method;
D O I
10.4028/www.scientific.net/AMR.383-390.1960
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The symplectic algorithm is a kind of new numerical integration methods. This paper proposes the application of the explicit and symplectic Runge-Kutta-Nystrom method to solve the differential equations encountered in the power system transient stability simulation. The proposed method achieves significant improvement both in speed and in calculation precision as compared to the conventional Runge-Kutta method which is widely used for power system transient stability simulation. The proposed method is applied to the IEEE 145-bus system and the results are reported.
引用
收藏
页码:1960 / 1964
页数:5
相关论文
共 11 条
[1]  
Chen Quanfa, 2008, Mathematica Numerica Sinica, V30, P201
[2]  
Fangzong Wang, 2009, POWER SYSTEM PROTECT, V37, P15
[3]  
FENG K, 1986, J COMPUT MATH, V4, P279
[4]  
Feng K, 2003, Symplectic geometric algorithms for Hamiltonian systems
[5]  
Kang F, 1991, Prog. Nat. Sci., V1, P105
[6]   Multifrontal Solver for Online Power System Time-Domain Simulation [J].
Khaitan, Siddhartha Kumar ;
McCalley, James D. ;
Chen, Qiming .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (04) :1727-1737
[7]  
Sun G, 2000, J COMPUT MATH, V18, P61
[8]  
SUN G, 1993, J COMPUT MATH, V11, P250
[9]  
Wen L. P., 1998, NATURAL SCI J XIANGT, V20, P1
[10]  
XIAO A. G., 1995, NUMERICAL MATH, V17, P213