Quasi-periodic solutions of the modified Kadomtsev-Petviashvili equation

被引:90
|
作者
Geng, XG [1 ]
Wu, YT
Cao, CW
机构
[1] CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China
[2] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
[3] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Peoples R China
来源
关键词
D O I
10.1088/0305-4470/32/20/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The (2 + 1)-dimensional modified Kadomtsev-Petviashvili equation is decomposed into systems of integrable ordinary differential equations resorting to the nonlinearization of Lax pairs. Abel-Jacobi coordinates are introduced to straighten the flows, from which quasi-periodic solutions of the modified Kadomtsev-Petviashvili equation are obtained in terms of Riemann theta functions.
引用
收藏
页码:3733 / 3742
页数:10
相关论文
共 50 条