Real hypersurfaces in the complex quadric with Lie invariant normal Jacobi operator

被引:3
作者
Suh, Young Jin [1 ,2 ]
Kim, Gyu Jong [1 ,2 ]
机构
[1] Kyungpook Natl Univ, Coll Nat Sci, Dept Math, Daegu 41566, South Korea
[2] Kyungpook Natl Univ, Coll Nat Sci, Res Inst Real & Complex Manifolds, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Invariant normal Jacobi operator; (sic)-isotropic; (sic)-principal; Kahler structure; Complex conjugation; Complex quadric; 2-PLANE GRASSMANNIANS; RICCI TENSOR; SUBMANIFOLDS;
D O I
10.1016/j.aam.2018.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of Lie invariant normal Jacobi operator for real hypersurfaces in the complex quadric Q(m) = SOm+2/SOmSO2. The existence of an invariant normal Jacobi operator implies that the unit normal vector field N becomes (sic)-principal or (sic)-isotropic. Using an analysis of cases, we give a complete classification of real hypersurfaces in Q(m) = SOm+2/SOmSO2 with Lie invariant normal Jacobi operator. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:117 / 134
页数:18
相关论文
共 23 条
[1]  
[Anonymous], 1987, Saitama Math. J.
[2]   REAL HYPERSURFACES WITH ISOMETRIC REEB FLOW IN COMPLEX QUADRICS [J].
Berndt, Jurgen ;
Suh, Young Jin .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (07)
[3]   The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians [J].
de Dios Perez, Juan ;
Suh, Young Jin .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (01) :211-235
[4]   Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space [J].
de Dios Perez, Juan .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (06) :1781-1794
[5]  
Jeong I, 2010, PUBL MATH-DEBRECEN, V76, P203
[6]   Real hypersurfaces in complex hyperbolic two-plane Grassmannians with Reeb invariant Ricci tensor [J].
Kim, Gyu Jong ;
Suh, Young Jin .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 47 :14-25
[8]   Totally geodesic submanifolds of the complex quadric [J].
Klein, Sebastian .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (01) :79-96
[9]  
Kobayashi S, 1996, Foundations of Differential Geometry, V2
[10]  
Pérez JD, 2001, ACTA MATH HUNG, V91, P343