Deconvolving the contributions of cell-type heterogeneity on cortical gene expression

被引:58
作者
Patrick, Ellis [1 ,2 ]
Taga, Mariko [3 ]
Ergun, Ayla [4 ]
Ng, Bernard [5 ,6 ,7 ]
Casazza, William [5 ,6 ,7 ,8 ]
Cimpean, Maria [9 ]
Yung, Christina [3 ]
Schneider, Julie A. [10 ]
Bennett, David A. [10 ]
Gaiteri, Chris [10 ]
De Jager, Philip L. [3 ]
Bradshaw, Elizabeth M. [11 ]
Mostafavi, Sara [5 ,6 ,7 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW, Australia
[2] Univ Sydney, Westmead Inst Med Res, Sydney, NSW, Australia
[3] Columbia Univ, Med Ctr, Dept Neurol, Ctr Translat & Computat Neuroimmunol, New York, NY USA
[4] Biogen, Res & Dev, Cambridge, MA USA
[5] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[6] Univ British Columbia, Dept Med Genet, Vancouver, BC, Canada
[7] Ctr Mol Med & Therapeut, Vancouver, BC, Canada
[8] Univ British Columbia, Bioinformat Training Program, Vancouver, BC, Canada
[9] Washington Univ, Sch Med, Dept Pediat, Div Rheumatol, St Louis, MO 63110 USA
[10] Rush Univ, Rush Alzheimers Dis Ctr, Med Ctr, Chicago, IL USA
[11] Columbia Univ, Dept Neurol, Med Ctr, New York, NY USA
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
BRAIN; TRANSCRIPTOME; INFORMATION; MAP;
D O I
10.1371/journal.pcbi.1008120
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Author summary Gene expression data generated from a tissue sample reflects an average gene expression profile across heterogeneous populations of cells. Because composition of constituent cell-types can vary across individuals (due to technical or biological factors), differential gene expression analysis requires estimating and adjusting for such cellular heterogeneity. While manydeconvolution algorithmsfor estimating cellular composition from tissue gene expression data have been tested extensively in blood, their performance when applied to brain tissue is unclear. To address this gap, we generated an immunohistochemistry (IHC) dataset for five major cell-types from brain, in order to apply and then assess deconvolution algorithms for application to brain gene expression datasets. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. Further, we show that adjusting for estimated cell-type proportions across individuals when conducting differential gene expression analysis is important in reducing false associations. Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood samples, but their performance when applied to brain tissue is unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression data. With the IHC data as the benchmark, this resource enables quantitative assessment of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-seq data. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. In fact, neuronal subpopulation can also be estimated from bulk brain tissue samples. Further, we show that including the cell-type proportion estimates as confounding factors is important for reducing false associations between Alzheimer's disease phenotypes and gene expression. Lastly, we demonstrate that using more accurate marker sets can substantially improve statistical power in detecting cell-type specific expression quantitative trait loci (eQTLs).
引用
收藏
页数:17
相关论文
共 30 条
[1]   Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus [J].
Abbas, Alexander R. ;
Wolslegel, Kristen ;
Seshasayee, Dhaya ;
Modrusan, Zora ;
Clark, Hilary F. .
PLOS ONE, 2009, 4 (07)
[2]   Genetic effects on gene expression across human tissues [J].
Aguet, Francois ;
Brown, Andrew A. ;
Castel, Stephane E. ;
Davis, Joe R. ;
He, Yuan ;
Jo, Brian ;
Mohammadi, Pejman ;
Park, Yoson ;
Parsana, Princy ;
Segre, Ayellet V. ;
Strober, Benjamin J. ;
Zappala, Zachary ;
Cummings, Beryl B. ;
Gelfand, Ellen T. ;
Hadley, Kane ;
Huang, Katherine H. ;
Lek, Monkol ;
Li, Xiao ;
Nedzel, Jared L. ;
Nguyen, Duyen Y. ;
Noble, Michael S. ;
Sullivan, Timothy J. ;
Tukiainen, Taru ;
MacArthur, Daniel G. ;
Getz, Gad ;
Management, Nih Program ;
Addington, Anjene ;
Guan, Ping ;
Koester, Susan ;
Little, A. Roger ;
Lockhart, Nicole C. ;
Moore, Helen M. ;
Rao, Abhi ;
Struewing, Jeffery P. ;
Volpi, Simona ;
Collection, Biospecimen ;
Brigham, Lori E. ;
Hasz, Richard ;
Hunter, Marcus ;
Johns, Christopher ;
Johnson, Mark ;
Kopen, Gene ;
Leinweber, William F. ;
Lonsdale, John T. ;
McDonald, Alisa ;
Mestichelli, Bernadette ;
Myer, Kevin ;
Roe, Bryan ;
Salvatore, Michael ;
Shad, Saboor .
NATURE, 2017, 550 (7675) :204-+
[3]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[4]   PREMORTEM AND POSTMORTEM INFLUENCES ON BRAIN-RNA [J].
BARTON, AJL ;
PEARSON, RCA ;
NAJLERAHIM, A ;
HARRISON, PJ .
JOURNAL OF NEUROCHEMISTRY, 1993, 61 (01) :1-11
[5]   A survey of human brain transcriptome diversity at the single cell level [J].
Darmanis, Spyros ;
Sloan, Steven A. ;
Zhang, Ye ;
Enge, Martin ;
Caneda, Christine ;
Shuer, Lawrence M. ;
Gephart, Melanie G. Hayden ;
Barres, Ben A. ;
Quake, Stephen R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (23) :7285-7290
[6]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22
[7]   Identifying robust communities and multi-community nodes by combining top-down and bottom-up approaches to clustering [J].
Gaiteri, Chris ;
Chen, Mingming ;
Szymanski, Boleslaw ;
Kuzmin, Konstantin ;
Xie, Jierui ;
Lee, Changkyu ;
Blanche, Timothy ;
Neto, Elias Chaibub ;
Huang, Su-Chun ;
Grabowski, Thomas ;
Madhyastha, Tara ;
Komashko, Vitalina .
SCIENTIFIC REPORTS, 2015, 5
[8]  
Habib N, 2017, NAT METHODS, V14, P955, DOI [10.1038/NMETH.4407, 10.1038/nmeth.4407]
[9]   An anatomically comprehensive atlas of the adult human brain transcriptome [J].
Hawrylycz, Michael J. ;
Lein, Ed S. ;
Guillozet-Bongaarts, Angela L. ;
Shen, Elaine H. ;
Ng, Lydia ;
Miller, Jeremy A. ;
van de lagemaat, Louie N. ;
Smith, Kimberly A. ;
Ebbert, Amanda ;
Riley, Zackery L. ;
Abajian, Chris ;
Beckmann, Christian F. ;
Bernard, Amy ;
Bertagnolli, Darren ;
Boe, Andrew F. ;
Cartagena, Preston M. ;
Chakravarty, M. Mallar ;
Chapin, Mike ;
Chong, Jimmy ;
Dalley, Rachel A. ;
Daly, Barry David ;
Dang, Chinh ;
Datta, Suvro ;
Dee, Nick ;
Dolbeare, Tim A. ;
Faber, Vance ;
Feng, David ;
Fowler, David R. ;
Goldy, Jeff ;
Gregor, Benjamin W. ;
Haradon, Zeb ;
Haynor, David R. ;
Hohmann, John G. ;
Horvath, Steve ;
Howard, Robert E. ;
Jeromin, Andreas ;
Jochim, Jayson M. ;
Kinnunen, Marty ;
Lau, Christopher ;
Lazarz, Evan T. ;
Lee, Changkyu ;
Lemon, Tracy A. ;
Li, Ling ;
Li, Yang ;
Morris, John A. ;
Overly, Caroline C. ;
Parker, Patrick D. ;
Parry, Sheana E. ;
Reding, Melissa ;
Royall, Joshua J. .
NATURE, 2012, 489 (7416) :391-399
[10]   Accelerating Medicines Partnership: Alzheimer's Disease (AMP-AD) Knowledge Portal Aids Alzheimer's Drug Discovery through Open Data Sharing [J].
Hodes, Richard J. ;
Buckholtz, Neil .
EXPERT OPINION ON THERAPEUTIC TARGETS, 2016, 20 (04) :389-391