Geometric influence of the laser-based powder bed fusion process in Ti6AL4V and AlSi10Mg

被引:7
|
作者
Chua, Zhong Yang [1 ,2 ]
Moon, Seung Ki [2 ]
Jiao, Lishi [3 ]
Ahn, Ii Hyuk [4 ]
机构
[1] ITE Coll East, Sch Engn Mech Engn, Inst Tech Educ, 10 Simei Ave, Singapore 486047, Singapore
[2] Nanyang Technol Univ, Singapore Ctr 3D Printing, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Hebei Univ Sci & Technol, Sch Mat Sci & Engn, Hebei Key Lab Mat Near Net Forming Technol, Shijiazhuang 050018, Hebei, Peoples R China
[4] Tongmyong Univ, Dept Mech Engn, Busan 48520, South Korea
基金
新加坡国家研究基金会;
关键词
Additive manufacturing; 3D printing; Laser-based powder bed fusion; Vickers hardness; Ti-6Al-4V; AlSi10Mg; SLM PROCESS PARAMETERS; MECHANICAL-PROPERTIES; HEAT-TREATMENT; MELTING MICROSTRUCTURE; ALLOY; ORIENTATION; THICKNESS; BEHAVIOR; DESIGN; PART;
D O I
10.1007/s00170-021-07089-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many studies have shown that the mechanical properties and geometric accuracy of additive manufacturing parts are dependent of many factors such as laser energy density, build orientation, and heat transfer histories. Amongst the factors, heat transfer histories are highly dependent on the geometry of a part, resulting in influencing the mechanical properties and microstructure evolution due to the repeated heating and cooling process. Heat transfer histories are associated with material thermal properties which include thermal conductivity, thermal diffusivity, specific heat capacity, and temperature gradient. The objective of this paper is to understand and observe the microstructure evolution process and microhardness based on variation in geometrical characteristic of the laser-based powder bed fusion (L-PBF). This paper presents the effect of the geometric factors on the mechanical properties and geometric accuracy during the L-PBF process, which benefit future process optimisation and modelling. In this study, samples with varying wall thickness are fabricated in TI6AL4Vand AlSi10Mg alloys by L-PBF. The samples are systematically evaluated by the optical microscope and the Vickers hardness tester. Microstructural characterisation of these samples is further evaluated via scanning electron microscopy. The results show that there is a signification relationship between material thermal properties, microstructure evolution, and mechanical properties with respect to the variation in wall thickness. These results can be used to understand the material thermal behaviour in lattice structures with a thin or small-sized feature and serve as a design guideline to indirectly control the microstructure of a L-PBF part.
引用
收藏
页码:3165 / 3176
页数:12
相关论文
共 50 条
  • [41] AlSi10Mg hollow-strut lattice metamaterials by laser powder bed fusion
    Noronha, Jordan
    Leary, Martin
    Brandt, Milan
    Qian, Ma
    MATERIALS ADVANCES, 2024, 5 (09): : 3751 - 3770
  • [42] Boosting Productivity of Laser Powder Bed Fusion for AlSi10Mg
    Defanti, Silvio
    Cappelletti, Camilla
    Gatto, Andrea
    Tognoli, Emanuele
    Fabbri, Fabrizio
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2022, 6 (05):
  • [43] Characterization and Analysis of the Thermal Conductivity of AlSi10Mg Fabricated by Laser Powder Bed Fusion
    Elkholy, Ahmed
    Quinn, Paul
    Mhurchadha, Sinead M. Ui
    Raghavendra, Ramesh
    Kempers, Roger
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (10):
  • [44] Microstructural consistency in the additive manufactured metallic materials: A study on the laser powder bed fusion of AlSi10Mg
    Hadadzadeh, Amir
    Amirkhiz, Babak Shalchi
    Langelier, Brian
    Li, Jian
    Mohammadi, Mohsen
    ADDITIVE MANUFACTURING, 2021, 46
  • [45] Influence of powder size on defect generation in laser powder bed fusion of AlSi10Mg alloy
    Chu, Fuzhong
    Li, Erlei
    Shen, Haopeng
    Chen, Zhuoer
    Li, Yixin
    Liu, Hui
    Min, Shiling
    Tian, Xinni
    Zhang, Kai
    Zhou, Zongyan
    Zou, Ruiping
    Hou, Juan
    Wu, Xinhua
    Huang, Aijun
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 94 : 183 - 195
  • [46] Laser powder bed fusion of Ti6Al4V graded scaffold for local stiffness matching
    Zhang, Junfang
    Zhai, Wengang
    Zhou, Wei
    Long, Zhang
    Yang, Liu
    Li, Xiang
    MATERIALS TODAY COMMUNICATIONS, 2025, 43
  • [47] A New Approach to Empirical Optimization of Laser Powder Bed Fusion Process for Ti6Al4V Parts
    Baghi, Alireza Dareh
    Nafisi, Shahrooz
    Hashemi, Reza
    Ebendorff-Heidepriem, Heike
    Ghomashchi, Reza
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (20) : 9472 - 9488
  • [48] Powder contamination during laser powder bed fusion: Inconel 718 in Ti6Al4V
    Groden, Cory
    Traxel, Kellen D.
    Bandyopadhyay, Amit
    MATERIALS LETTERS, 2024, 365
  • [49] Development of an empirical process model for adjusted porosity in laser-based powder bed fusion of Ti-6Al-4V
    Nicole Emminghaus
    Johanna Paul
    Christian Hoff
    Jörg Hermsdorf
    Stefan Kaierle
    The International Journal of Advanced Manufacturing Technology, 2022, 118 : 1239 - 1254
  • [50] Influence of Microstructure on Fracture Mechanisms of the Heat-Treated AlSi10Mg Alloy Produced by Laser-Based Powder Bed Fusion
    Di Egidio, Gianluca
    Martini, Carla
    Borjesson, Johan
    Ghassemali, Ehsan
    Ceschini, Lorella
    Morri, Alessandro
    MATERIALS, 2023, 16 (05)