Methylviologen-Mediated Electrochemical Synthesis of Platinum Nanoparticles in Solution Bulk

被引:11
作者
Yanilkin, V. V. [1 ]
Nastapova, N. V. [1 ]
Nasretdinova, G. R. [1 ]
Fazleeva, R. R. [1 ]
Fedorenko, S. V. [1 ]
Mustafina, A. R. [1 ]
Osin, Yu. N. [2 ]
机构
[1] Russian Acad Sci, Arbuzov Inst Organ & Phys Chem, Kazan Res Ctr, Kazan 420088, Russia
[2] Kazan Volga Reg Fed Univ, Interdisciplinary Ctr Analyt Microscopy, Kazan 420018, Russia
基金
俄罗斯基础研究基金会;
关键词
electrosynthesis; nanoparticles; platinum; mediator; methylviologen; polyvinylpyrrolidone; silica nanoparticles; SILVER NANOPARTICLES; GOLD NANOPARTICLES; PALLADIUM NANOPARTICLES; PD-0; NANOPARTICLES; MOLECULAR-OXYGEN; ELECTROSYNTHESIS; CLUSTERS; REDUCTION; TETRAVIOLOGEN; NANOCOMPOSITE;
D O I
10.1134/S1023193517050160
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Platinum nanoparticles (PtNPs) are synthesized by methylviologen-mediated reduction of PtCl2 at the potentials of the MV2+/MV center dot+ redox couple in 40% aqueous DMF solution. In the absence of stabilizing agents and in the presence of a stabilizer in the form of spherical silica NPs or alkylamine-modified silica NPs (SiO2-NHR), a part of PtNPs (14-18%) are deposited on the electrode while the rest of particles remain in solution to form coarse aggregates which precipitate. In the latter case, PtNPs are also partly bound to form individual ultrafine NPs (3 +/- 2 nm) on the SiO2-NHR surface. In the presence of polyvinylpyrrolidone (PVP), the generated PtNPs (18 +/- 9 nm) neither aggregate nor deposit on the cathode but are completely stabilized in solution being encapsulated within the PVP matrix. The obtained PtNPs are characterized by the methods of dynamic light-scattering and electron microscopy.
引用
收藏
页码:509 / 521
页数:13
相关论文
共 38 条
  • [1] [Anonymous], 2012, HDB LESS COMMON NANO
  • [2] [Anonymous], 2000, Metal Nanoparticles in Polymers
  • [3] ELECTROCHEMICAL GROWTH OF SUPERPARAMAGNETIC COBALT CLUSTERS
    BECKER, JA
    SCHAFER, R
    FESTAG, R
    RULAND, W
    WENDORFF, JH
    PEBLER, J
    QUAISER, SA
    HELBIG, W
    REETZ, MT
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (07) : 2520 - 2527
  • [4] Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology
    Daniel, MC
    Astruc, D
    [J]. CHEMICAL REVIEWS, 2004, 104 (01) : 293 - 346
  • [5] Dykman L. A., 2008, Zolotye nanochastitsy: sintez, svoystva, biomeditsinskoe primenenie
  • [6] Biochemical synthesis of gold and zinc nanoparticles in reverse micelles
    Egorova, E. M.
    [J]. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 84 (04) : 629 - 635
  • [7] Egorova E.M., 2004, Nanotekhnika, P15
  • [8] Faraday M., 1857, PHILOS T ROY SOC LON, V147, P145, DOI DOI 10.1098/RSTL.1857.0011
  • [9] Surface decoration of silica nanoparticles by Pd(0) deposition for catalytic application in aqueous solutions
    Fedorenko, Svetlana
    Jilkin, Michael
    Nastapova, Natalya
    Yanilkin, Vitaliy
    Bochkova, Olga
    Buriliov, Vladimir
    Nizameev, Irek
    Nasretdinova, Gulnaz
    Kadirov, Marsil
    Mustafina, Asiya
    Budnikova, Yulia
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 486 : 185 - 191
  • [10] Haber F., 1898, Z. Anorg. Chem, V16, P438, DOI DOI 10.1002/ZAAC.18980160144