Pharmacologic Screening Identifies Metabolic Vulnerabilities of CD8+ T Cells

被引:114
|
作者
Drijvers, Jefte M. [1 ,2 ,3 ,4 ,5 ,6 ]
Gillis, Jacob E. [1 ,2 ,4 ,5 ,7 ]
Muijlwijk, Tara [1 ,2 ,4 ,5 ,8 ]
Nguyen, Thao H. [1 ,2 ,4 ,5 ]
Gaudiano, Emily F. [1 ,2 ,4 ,5 ]
Harris, Isaac S. [2 ,3 ,9 ]
LaFleur, Martin W. [1 ,2 ,4 ,5 ]
Ringel, Alison E. [2 ,3 ]
Yao, Cong-Hui [2 ,3 ]
Kurmi, Kiran [2 ,3 ]
Juneja, Vikram R. [1 ,2 ,4 ,5 ,10 ]
Trombley, Justin D. [1 ,2 ,4 ,5 ,11 ]
Haigis, Marcia C. [2 ,3 ]
Sharpe, Arlene H. [1 ,2 ,4 ,5 ]
机构
[1] Harvard Med Sch, Dept Immunol, Blavatnik Inst, Boston, MA 02115 USA
[2] Harvard Med Sch, Ludwig Ctr Harvard, Boston, MA 02115 USA
[3] Harvard Med Sch, Dept Cell Biol, Blavatnik Inst, Boston, MA 02115 USA
[4] Harvard Med Sch, Evergrande Ctr Immunol Dis, Boston, MA 02115 USA
[5] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[6] Third Rock Ventures, Boston, MA USA
[7] Univ Pittsburgh, Sch Med, Pittsburgh, PA USA
[8] Vrije Univ Amsterdam, Dept Otolaryngol Head & Neck Surg, Canc Ctr Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
[9] Univ Rochester, Med Ctr, Wilmot Canc Inst, Rochester, NY 14642 USA
[10] BioNTech SE, Cambridge, MA USA
[11] Michigan State Univ, E Lansing, MI 48824 USA
关键词
CANCER-CELLS; MITOCHONDRIAL BIOGENESIS; TUMOR MICROENVIRONMENT; FERROPTOSIS; CHECKPOINT; IMMUNOTHERAPY; DEPLETION; IMMUNITY; THERAPY; ACSL4;
D O I
10.1158/2326-6066.CIR-20-0384
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Metabolic constraints in the tumor microenvironment constitute a barrier to effective antitumor immunity and similarities in the metabolic properties of T cells and cancer cells impede the specific therapeutic targeting of metabolism in either population. To identify distinct metabolic vulnerabilities of CD8(+) T cells and cancer cells, we developed a high-throughput in vitro pharmacologic screening platform and used it to measure the cell type-specific sensitivities of activated CD8(+) T cells and B16 melanoma cells to a wide array of metabolic perturbations during antigen-specific killing of cancer cells by CD8(+) T cells. We illustrated the applicability of this screening platform by showing that CD8(+) T cells were more sensitive to ferroptosis induction by inhibitors of glutathione peroxidase 4 (GPX4) than B16 and MC38 cancer cells. Overexpression of ferroptosis suppressor protein 1 (FSP1) or cytosolic GPX4 yielded ferroptosis-resistant CD8(+) T cells without compromising their function, while genetic deletion of the ferroptosis sensitivity-promoting enzyme acyl-CoA synthetase longchain family member 4 (ACSL4) protected CD8(+) T cells from ferroptosis but impaired antitumor CD8(+) T-cell responses. Our screen also revealed high T cell-specific vulnerabilities for compounds targeting NAD(+) metabolism or autophagy and endoplasmic reticulum (ER) stress pathways. We focused the current screening effort on metabolic agents. However, this in vitro screening platform may also be valuable for rapid testing of other types of compounds to identify regulators of antitumor CD8(+) T-cell function and potential therapeutic targets.
引用
收藏
页码:184 / 199
页数:16
相关论文
共 50 条
  • [1] Twin study identifies early immunological and metabolic dysregulation of CD8+ T cells in multiple sclerosis
    Kavaka, Vladyslav
    Mutschler, Luisa
    de la Rosa del Val, Clara
    Eglseer, Klara
    Gomez Martinez, Ana M.
    Flierl-Hecht, Andrea
    Ertl-Wagner, Birgit
    Keeser, Daniel
    Mortazavi, Martin
    Seelos, Klaus
    Zimmermann, Hanna
    Haas, Juergen
    Wildemann, Brigitte
    Kuempfel, Tania
    Dornmair, Klaus
    Korn, Thomas
    Hohlfeld, Reinhard
    Kerschensteiner, Martin
    Gerdes, Lisa Ann
    Beltran, Eduardo
    SCIENCE IMMUNOLOGY, 2024, 9 (99)
  • [2] CD39 Expression Identifies Terminally Exhausted CD8+ T Cells
    Gupta, Prakash K.
    Godec, Jernej
    Wolski, David
    Adland, Emily
    Yates, Kathleen
    Pauken, Kristen E.
    Cosgrove, Cormac
    Ledderose, Carola
    Junger, Wolfgang G.
    Robson, Simon C.
    Wherry, E. John
    Alter, Galit
    Goulder, Philip J. R.
    Klenerman, Paul
    Sharpe, Arlene H.
    Lauer, Georg M.
    Haining, W. Nicholas
    PLoS Pathogens, 2015, 11 (10)
  • [3] Functional analysis of bovine CD8+ and CD8+ γδ T cells
    Meissner, N
    Wilson, E
    Jackiv-Turk, L
    Jutila, M
    FASEB JOURNAL, 2000, 14 (06): : A986 - A986
  • [4] Metabolic Regulation of CD8+ T Cells: From Mechanism to Therapy
    Zheng, Ying
    Wang, Xiaomin
    Huang, Min
    ANTIOXIDANTS & REDOX SIGNALING, 2022, 37 (16) : 1234 - 1253
  • [5] Early changes in the metabolic profile of activated CD8+ T cells
    Clemens Cammann
    Alexander Rath
    Udo Reichl
    Holger Lingel
    Monika Brunner-Weinzierl
    Luca Simeoni
    Burkhart Schraven
    Jonathan A. Lindquist
    BMC Cell Biology, 17
  • [6] Early changes in the metabolic profile of activated CD8+ T cells
    Cammann, Clemens
    Rath, Alexander
    Reichl, Udo
    Lingel, Holger
    Brunner-Weinzierl, Monika
    Simeoni, Luca
    Schraven, Burkhart
    Lindquist, Jonathan A.
    BMC CELL BIOLOGY, 2016, 17
  • [7] CD8+ regulatory T cells
    不详
    IMMUNOBIOLOGY, 2004, 209 (4-6) : 456 - 457
  • [8] CD8+ T cells in autoimmunity
    Walter, U
    Santamaria, P
    CURRENT OPINION IN IMMUNOLOGY, 2005, 17 (06) : 624 - 631
  • [9] CD8+ T cells in tuberculosis
    Lazarevic, V
    Flynn, J
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2002, 166 (08) : 1116 - 1121
  • [10] CD8+ T Cells in Atherosclerosis
    Schaefer, Sarah
    Zernecke, Alma
    CELLS, 2021, 10 (01) : 1 - 16