Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures

被引:85
作者
Izard, Anna Guell [1 ]
Bauer, Jens [1 ]
Crook, Cameron [2 ]
Turlo, Vladyslav [2 ]
Valdevit, Lorenzo [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Mat Sci & Engn, Irvine, CA 92697 USA
关键词
glassy carbon; metamaterials; nanospinodal; two-photon polymerization; ultrahigh energy absorption; LATTICE STRUCTURES; HIGH-STRENGTH; MECHANICAL METAMATERIALS; CARBON; POLYMER; MICROLATTICES; FABRICATION; COMPOSITES; CAPABILITY; ULTRALIGHT;
D O I
10.1002/smll.201903834
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanolattices are promoted as next-generation multifunctional high-performance materials, but their mechanical response is limited to extreme strength yet brittleness, or extreme deformability but low strength and stiffness. Ideal impact protection systems require high-stress plateaus over long deformation ranges to maximize energy absorption. Here glassy carbon nanospinodals, i.e., nanoarchitectures with spinodal shell topology, combining ultrahigh energy absorption and exceptional strength and stiffness at low weight. Noncatastrophic deformation up to 80% strain, and energy absorption up to one order of magnitude higher than for other nano-, micro-, macro-architectures and solids, and state-of-the-art impact protection structures are shown. At the same time, the strength and stiffness are on par with the most advanced yet brittle nanolattices, demonstrating true multifunctionality. Finite element simulations show that optimized shell thickness-to-curvature-radius ratios suppress catastrophic failure by impeding propagation of dangerously oriented cracks. In contrast to most micro- and nano-architected materials, spinodal architectures may be easily manufacturable on an industrial scale, and may become the next generation of superior cellular materials for structural applications.
引用
收藏
页数:8
相关论文
共 52 条
[31]   Strong, lightweight, and recoverable three-dimensional ceramic nanolattices [J].
Meza, Lucas R. ;
Das, Satyajit ;
Greer, Julia R. .
SCIENCE, 2014, 345 (6202) :1322-1326
[32]   Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability [J].
Mieszala, Maxime ;
Hasegawa, Madoka ;
Guillonneau, Gaylord ;
Bauer, Jens ;
Raghavan, Rejin ;
Frantz, Cedric ;
Kraft, Oliver ;
Mischler, Stefano ;
Michler, Johann ;
Philippe, Laetitia .
SMALL, 2017, 13 (08)
[33]  
MILTZ J, 1981, POLYM ENG SCI, V21, P1010, DOI 10.1002/pen.760211505
[34]   Damage-tolerant architected materials inspired by crystal microstructure [J].
Minh-Son Pham ;
Liu, Chen ;
Todd, Iain ;
Lertthanasarn, Jedsada .
NATURE, 2019, 565 (7739) :305-+
[35]   Synthesis and Characterization of Carbon Nanotube-Polymer Multilayer Structures [J].
Misra, Abha ;
Raney, Jordan R. ;
De Nardo, Luigi ;
Craig, Anna E. ;
Daraio, Chiara .
ACS NANO, 2011, 5 (10) :7713-7721
[36]   Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds [J].
Rajagopalan, Srinivasan ;
Robb, Richard A. .
MEDICAL IMAGE ANALYSIS, 2006, 10 (05) :693-712
[37]   Energy dissipation mechanisms in hollow metallic microlattices [J].
Salari-Sharif, Ladan ;
Schaedler, Tobias A. ;
Valdevit, Lorenzo .
JOURNAL OF MATERIALS RESEARCH, 2014, 29 (16) :1755-1770
[38]   Ultralight Metallic Microlattices [J].
Schaedler, T. A. ;
Jacobsen, A. J. ;
Torrents, A. ;
Sorensen, A. E. ;
Lian, J. ;
Greer, J. R. ;
Valdevit, L. ;
Carter, W. B. .
SCIENCE, 2011, 334 (6058) :962-965
[39]   Designing Metallic Microlattices for Energy Absorber Applications [J].
Schaedler, Tobias A. ;
Ro, Christopher J. ;
Sorensen, Adam E. ;
Eckel, Zak ;
Yang, Sophia S. ;
Carter, William B. ;
Jacobsen, Alan J. .
ADVANCED ENGINEERING MATERIALS, 2014, 16 (03) :276-283
[40]  
Schoen A. H., 1970, INFINITE PERIODIC MI