Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures

被引:85
作者
Izard, Anna Guell [1 ]
Bauer, Jens [1 ]
Crook, Cameron [2 ]
Turlo, Vladyslav [2 ]
Valdevit, Lorenzo [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Mat Sci & Engn, Irvine, CA 92697 USA
关键词
glassy carbon; metamaterials; nanospinodal; two-photon polymerization; ultrahigh energy absorption; LATTICE STRUCTURES; HIGH-STRENGTH; MECHANICAL METAMATERIALS; CARBON; POLYMER; MICROLATTICES; FABRICATION; COMPOSITES; CAPABILITY; ULTRALIGHT;
D O I
10.1002/smll.201903834
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanolattices are promoted as next-generation multifunctional high-performance materials, but their mechanical response is limited to extreme strength yet brittleness, or extreme deformability but low strength and stiffness. Ideal impact protection systems require high-stress plateaus over long deformation ranges to maximize energy absorption. Here glassy carbon nanospinodals, i.e., nanoarchitectures with spinodal shell topology, combining ultrahigh energy absorption and exceptional strength and stiffness at low weight. Noncatastrophic deformation up to 80% strain, and energy absorption up to one order of magnitude higher than for other nano-, micro-, macro-architectures and solids, and state-of-the-art impact protection structures are shown. At the same time, the strength and stiffness are on par with the most advanced yet brittle nanolattices, demonstrating true multifunctionality. Finite element simulations show that optimized shell thickness-to-curvature-radius ratios suppress catastrophic failure by impeding propagation of dangerously oriented cracks. In contrast to most micro- and nano-architected materials, spinodal architectures may be easily manufacturable on an industrial scale, and may become the next generation of superior cellular materials for structural applications.
引用
收藏
页数:8
相关论文
共 52 条
[1]   Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies [J].
Al-Ketan, Oraib ;
Rezgui, Rachid ;
Rowshan, Reza ;
Du, Huifeng ;
Fang, Nicholas X. ;
Abu Al-Rub, Rashid K. .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (09)
[2]   Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM [J].
Al-Saedi, Dheyaa S. J. ;
Masood, S. H. ;
Faizan-Ur-Rab, Muhammad ;
Alomarah, Amer ;
Ponnusamy, P. .
MATERIALS & DESIGN, 2018, 144 :32-44
[3]   Size Effect on the Strength and Deformation Behavior of Glassy Carbon Nanopillars [J].
Albiez, Almut ;
Schwaiger, Ruth .
MRS ADVANCES, 2019, 4 (02) :133-138
[4]  
[Anonymous], 1997, Cellular solids: structure and properties
[5]  
Bauer J, 2016, NAT MATER, V15, P438, DOI [10.1038/NMAT4561, 10.1038/nmat4561]
[6]   Nanolattices: An Emerging Class of Mechanical Metamaterials [J].
Bauer, Jens ;
Meza, Lucas R. ;
Schaedler, Tobias A. ;
Schwaiger, Ruth ;
Zheng, Xiaoyu ;
Valdevit, Lorenzo .
ADVANCED MATERIALS, 2017, 29 (40)
[7]   High-strength cellular ceramic composites with 3D microarchitecture [J].
Bauer, Jens ;
Hengsbach, Stefan ;
Tesari, Iwiza ;
Schwaiger, Ruth ;
Kraft, Oliver .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (07) :2453-2458
[8]   Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness [J].
Berger, J. B. ;
Wadley, H. N. G. ;
Mcmeeking, R. M. .
NATURE, 2017, 543 (7646) :533-+
[9]   Smooth-shell metamaterials of cubic symmetry: Anisotropic elasticity, yield strength and specific energy absorption [J].
Bonatti, Colin ;
Mohr, Dirk .
ACTA MATERIALIA, 2019, 164 :301-321
[10]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801