Influence of single flaw on the failure process and energy mechanics of rock-like material

被引:148
作者
Jin, Jin [1 ]
Cao, Ping [1 ]
Chen, Yu [1 ,2 ]
Pu, Chengzhi [3 ]
Mao, Dawei [4 ]
Fan, Xiang [5 ]
机构
[1] Cent S Univ, Sch Resources & Safety Engn, Changsha 410083, Hunan, Peoples R China
[2] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Xuzhou 221116, Jiangsu, Peoples R China
[3] Univ South China, Sch Nucl Resources Engn, Hengyang 421001, Peoples R China
[4] Power China Zhongnan Engn Corp Ltd, Changsha 410014, Hunan, Peoples R China
[5] Changan Univ, Sch Highway, Xian 710064, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Failure pattern; Micro-crack increase; Particle deformation field; Energy mechanism; PFC; BONDED-PARTICLE MODEL; FRACTURE COALESCENCE; UNIAXIAL COMPRESSION; CRACK INITIATION; JOINTED ROCK; PROPAGATION; STRENGTH; STRESS;
D O I
10.1016/j.compgeo.2017.01.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates the influence of a flaw on crack initiation, the failure mode, deformation field and energy mechanism of the rock-like material under uniaxial compression. The results of laboratory test and numerical simulation demonstrate the flaw inclination effect can be classified into three groups: 0-30 degrees, 30-60 degrees and 75-90 degrees. The characteristic stresses increase as the flaw angle increases. The tensile cracks initiate from gentle flaws (alpha <= 30 degrees) and shear cracks appear at tips of steep flaws (alpha >= 45 degrees). The input energy, strain energy and dissipation energy of a specimen show approximate increasing trends as the flaw angle increases. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:150 / 162
页数:13
相关论文
共 51 条
[1]   A Bonded Particle Model Simulation of Shear Strength and Asperity Degradation for Rough Rock Fractures [J].
Asadi, Mohammad Sadegh ;
Rasouli, Vamegh ;
Barla, Giovanni .
ROCK MECHANICS AND ROCK ENGINEERING, 2012, 45 (05) :649-675
[2]  
Bieniawski ZT., 1967, INT J ROCK MECH MIN, V4, P407, DOI [DOI 10.1016/0148-9062(67)90030-7, 10.1016/0148-9062(67)90031-9, DOI 10.1016/0148-9062(67)90031-9]
[3]   Numerical modeling of fracture coalescence in a model rock material [J].
Bobet, A ;
Einstein, HH .
INTERNATIONAL JOURNAL OF FRACTURE, 1998, 92 (03) :221-252
[4]   Fracture coalescence in rock-type materials under uniaxial and biaxial compression [J].
Bobet, A ;
Einstein, HH .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1998, 35 (07) :863-888
[5]   The initiation of secondary cracks in compression [J].
Bobet, A .
ENGINEERING FRACTURE MECHANICS, 2000, 66 (02) :187-219
[6]   SIZE EFFECTS IN THE MIXED-MODE CRACK-PROPAGATION - SOFTENING AND SNAP-BACK ANALYSIS [J].
BOCCA, P ;
CARPINTERI, A ;
VALENTE, S .
ENGINEERING FRACTURE MECHANICS, 1990, 35 (1-3) :159-170
[7]   DILATANCY IN FRACTURE OF CRYSTALLINE ROCKS [J].
BRACE, WF ;
PAULDING, BW ;
SCHOLZ, C .
JOURNAL OF GEOPHYSICAL RESEARCH, 1966, 71 (16) :3939-&
[8]  
[陈新 Chen Xin], 2014, [岩土工程学报, Chinese Journal of Geotechnical Engineering], V36, P2236
[9]   Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: A particle flow code approach [J].
Fan Xiang ;
Kulatilake, P. H. S. W. ;
Chen Xin ;
Cao Ping .
JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2015, 22 (02) :638-645
[10]   Damage characterization during laboratory strength testing: A 3D-finite-discrete element approach [J].
Hamdi, P. ;
Stead, D. ;
Elmo, D. .
COMPUTERS AND GEOTECHNICS, 2014, 60 :33-46