Classification of cyclic braces

被引:56
作者
Rump, Wolfgang [1 ]
机构
[1] Univ Stuttgart, Inst Algebra & Zahlentheorie, D-70550 Stuttgart, Germany
关键词
D O I
10.1016/j.jpaa.2006.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Etingof, Schedler, and Soloviev have shown [P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999) 169-209] that T-structures on cyclic groups come from bijective l-cocycles and thus give rise to solutions of the quantum Yang-Baxter equation. At the end of their paper, they ask for a classification of T-structures on cyclic groups, especially p-groups. We solve the latter problem by means of generalized radical rings (=braces). (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:671 / 685
页数:15
相关论文
共 11 条
[1]   ON THE ADJOINT GROUP OF A RADICAL RING [J].
AMBERG, B ;
DICKENSCHIED, O .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (03) :262-270
[2]  
DRINFELD VG, 1992, LECT NOTES MATH, V1510, P1
[3]   Set-theoretical solutions to the quantum Yang-Baxter equation [J].
Etingof, P ;
Schedler, T ;
Soloviev, A .
DUKE MATHEMATICAL JOURNAL, 1999, 100 (02) :169-209
[4]  
HALL M, 1973, THEORY GROUPS
[5]  
Jacobson, 1974, AM MATH SOC C PUBL, V37
[6]  
Knuth Donald E., 1969, Seminumerical algorithms, V2
[7]   A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation [J].
Rump, W .
ADVANCES IN MATHEMATICS, 2005, 193 (01) :40-55
[8]  
RUMP W, BRACES RADICAL RINGS
[9]  
Serre J.-P., 1973, Graduate Texts in Mathematics
[10]  
WATTERS JF, 1968, J LONDON MATH SOC, V43, P725