Hyperharmonic series involving Hurwitz zeta function

被引:41
作者
Mezo, Istvan [1 ]
Dil, Ayhan [2 ]
机构
[1] Univ Debrecen, Inst Math, Debrecen, Hungary
[2] Akdeniz Univ, Dept Math, Fac Art & Sci, TR-07058 Antalya, Turkey
关键词
Hyperharmonic numbers; Euler sums; Riemann zeta function; Hurwitz zeta function; Hypergeometric series; STIRLING NUMBERS;
D O I
10.1016/j.jnt.2009.08.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the sum of the series formed by the so-called hyperharmonic numbers can be expressed in terms of the Riemann zeta function. These results enable us to reformulate Euler's formula involving the Hurwitz zeta function. In additon, we improve Conway and Guy's formula for hyperharmonic numbers. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:360 / 369
页数:10
相关论文
共 9 条
[1]  
[Anonymous], BOOK NUMBERS
[2]  
Benjamin A.T., 2003, Integers, V3, P1
[3]   ON AN INTRIGUING INTEGRAL AND SOME SERIES RELATED TO ZETA(4) [J].
BORWEIN, D ;
BORWEIN, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1191-1198
[4]   THE R-STIRLING NUMBERS [J].
BRODER, AZ .
DISCRETE MATHEMATICS, 1984, 49 (03) :241-259
[5]   ON SOME SERIES CONTAINING PSI(X)-PSI(Y) AND (PSI(X)-PSI(Y))2 FOR CERTAIN VALUES OF X AND Y [J].
DEDOELDER, PJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 37 (1-3) :125-141
[6]   A symmetric algorithm for hyperharmonic and Fibonacci numbers [J].
Dil, Ayhan ;
Mezo, Istvan .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (02) :942-951
[7]   Euler sums and contour integral representations [J].
Flajolet, P ;
Salvy, B .
EXPERIMENTAL MATHEMATICS, 1998, 7 (01) :15-35
[8]  
Graham R. L., 1993, CONCRETE MATH